

Decarbonisation pathways

Full study results

Part 1 - European economy Part 2 -European power sector

Decarbonisation pathways Part 1 - European economy

EU electrification and decarbonisation scenario modelling May 2018

eurelectric

Introduction and methodology

Why this study?

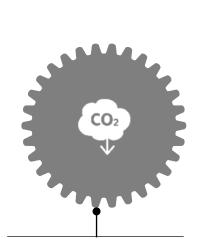
- Delivering on the Paris Agreement requires an increase of the EU's contribution to the fight against climate change
- The European electricity sector believes that cost-effective decarbonisation is crucial if Europe is to remain competitive in the global market place, and we are committed to leading this transition
- In its new vision published earlier this year, the power sector made a pledge to become carbon neutral well before mid-century, taking into account different starting points and commercial availability of key transition technologies, and sees electrification as a way to accelerate decarbonisation in other sectors of the economy in a cost-effective way
- With a view to achieving this vision and to making a meaningful contribution to the EU's climate ambition, Eurelectric has developed a set of EU decarbonisation and electrification scenarios towards 2050 for the main energy-using sectors
- The power sector will support these efforts and the second phase of this project will analyse in detail the decarbonisation pathways of the power sector and their associated costs, driving towards carbon-neutrality well before 2050, further supporting the results obtained during phase one

Key messages

- The potential for electrification is substantial across energy-using sectors and will underpin deep decarbonisation
 of the economy. Deep decarbonization is by implication an electrification journey. Electrification is the most direct,
 effective and efficient way of reaching the decarbonization objectives
- Significant changes, such as fast removal of barriers to adoption of electric technologies combined with technological progress, ambitious policies changes and global coordination, can lead to up to 95% emissions reduction by 2050. Scenarios are underpinned by 38% to 60% direct electrification of the economy (as a share of total final energy consumption) which is achievable with a 1-1.5% year on year growth of the EU direct electricity consumption, while TFC reduces by 0.6% to 1.3% each year. The first driver is climate protection which also brings societal and environmental benefits stemming from electrification such as noise reduction or better air quality. Further technology breakthroughs could lead to even higher electrification rates
- Electrification, both direct and indirect, has a critical role to play for achieving multiple EU policy targets. Energy efficiency measures and other carbon-neutral solutions will complement electrification to deliver on these ambitions
 - Electricity will play a leading role in transport where up to 63% of total final energy consumption will be electric in our most ambitious scenario
 - In buildings, energy efficiency is a key driver of emission reductions; district heating and cooling are expected to keep on playing critical roles in some geographies, while 45% to 63% of buildings energy consumption could be electric in 2050 driven by adoption of electric heat pumps
 - A series of industrial processes can technically be electrified with up to 50% direct electrification in 2050 and the relative competitiveness of electricity against other carbonneutral fuels will be the critical driver for this shift. Hydrogen and other carbon-neutral alternatives will also play a role and drive indirect electrification
- Different starting points in terms of energy mix, economic situation and industrial activities require different pathways and level of efforts across EU countries

Our analysis builds on a granular multi-factor approach

The study is based on a multi factor approach including:


- Total cost of ownership in the short to medium term,
- Relative cost competitiveness of decarbonization technologies,
- Market developments,
- Technological developments,
- Regulatory aspects at national and EU level,
- Political ambition,
- Societal benefits and barriers/incentives on the consumer side

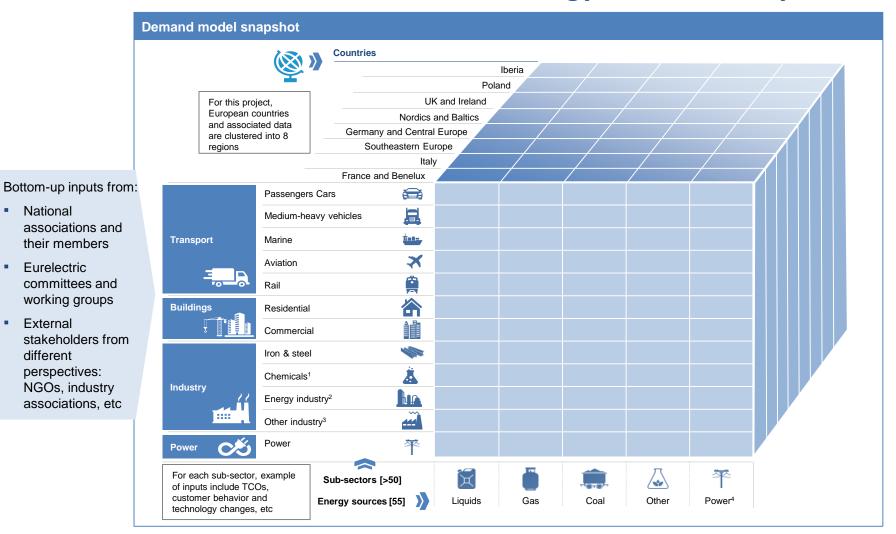
The analysis focuses on the role of electricity to accelerate decarbonization in transport, buildings and industry, with a view to:

Advancing Europe's competitiveness, economic growth and job creation, esp. in the industry sector, through efficient and reliable energy solutions

Promoting a sustainable and healthy society for European citizens, through carbon neutral energy and enhanced cities' air quality, esp. through electrified transportation Securing long-term affordable,

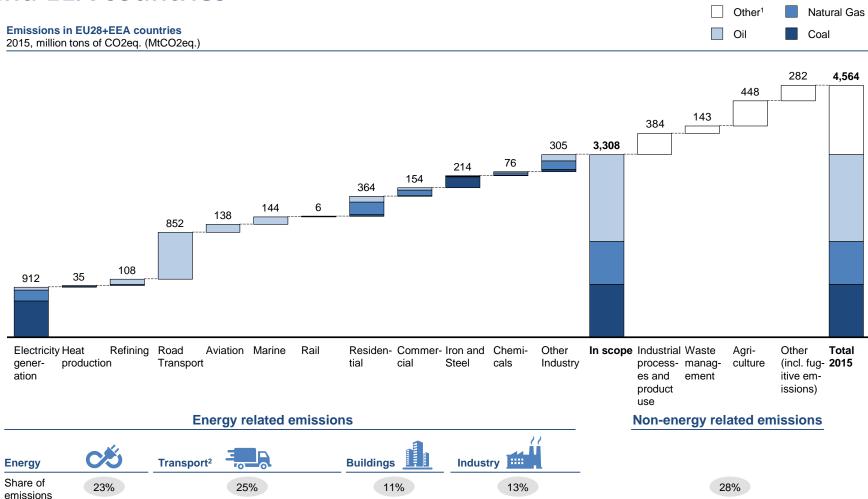
Securing long-term affordable, reliable and flexible energy supply to key European sectors and countries

In addition to electrification, decarbonization strategies will always include a combination of multiple levers, technologies and solutions, e.g., Energy efficiency, Green gas, Hydrogen, Additional use of RES, CCS for industrial processes Total final energy consumption and electricity demand are computed based on granular inputs and modelling at the country and sub-sector level (>50 sub-sectors considered across the 4 sectors prioritized: power, transport, buildings, industry)


Outputs from this multifactor analysis were syndicated through a very comprehensive stakeholder engagement with all eurelectric members as well as with external stakeholders through:

Workshops and discussions with relevant stakeholders by sector and industry Planned event in Brussels to discuss the key findings of the study

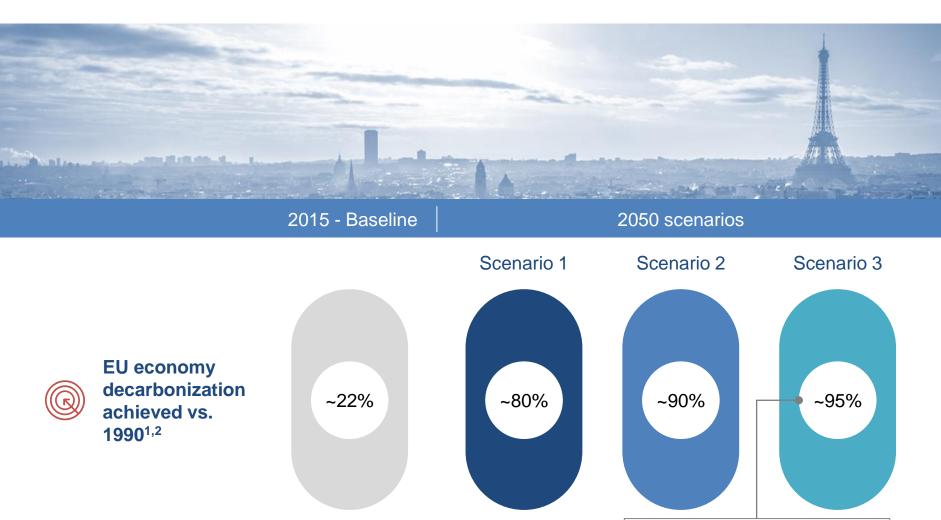
eurelectric



Detailed inputs collected bottom-up contribute to the robustness of the demand forecasts of energy and electricity

1. Organic, Ammonia, Other; 2. Oil & Gas, Own use, Other 3. Construction, Food & Agriculture, Manufacturing, Materials, Mining, Non-Energy, Other; 4. Separate global granular model SOURCE: Energy Insights, a McKinsey Solution – Global Energy Perspective

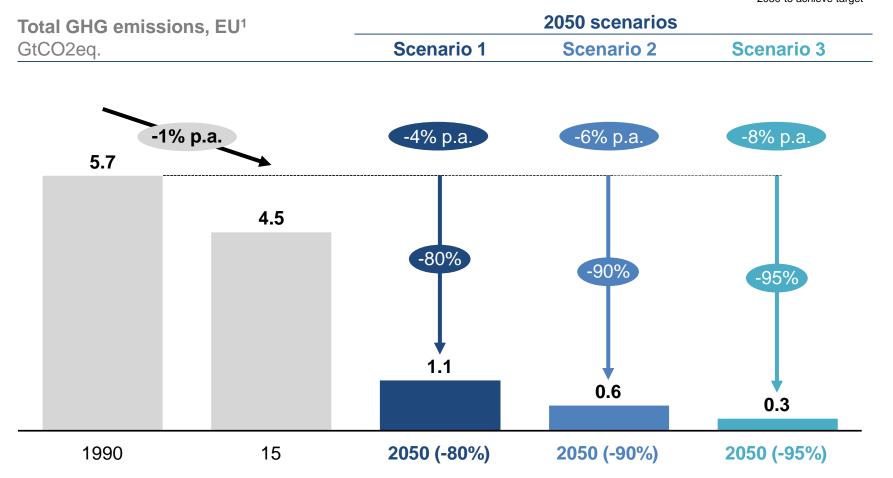
Our project focuses on all energy related emissions for all EU28 and EEA countries


E.g. methane emissions from land-fills or agriculture and GHG emissions from waste burning
 Includes international aviation and marine for consistency purposes
 SOURCE: Energy Insights, EuroStat, EU inventory, team analysis

eurelectric

EU decarbonization and electrification scenarios

eurelectric designed 3 deep EU decarbonization scenarios


Driving towards full EU economy decarbonization

1 Emissions out of scope are expected to contribute proportionally to the decarbonization effort required in each scenario

2 Decarbonization will be different by sector depending on relative costs and available technologies, industry contributing least with below 80% of emission reduction in all scenarios

The 3 scenarios deliver unprecedented but necessary reductions in CO2 emissions

 Required annual emission reduction rate between 2015-2050 to achieve target

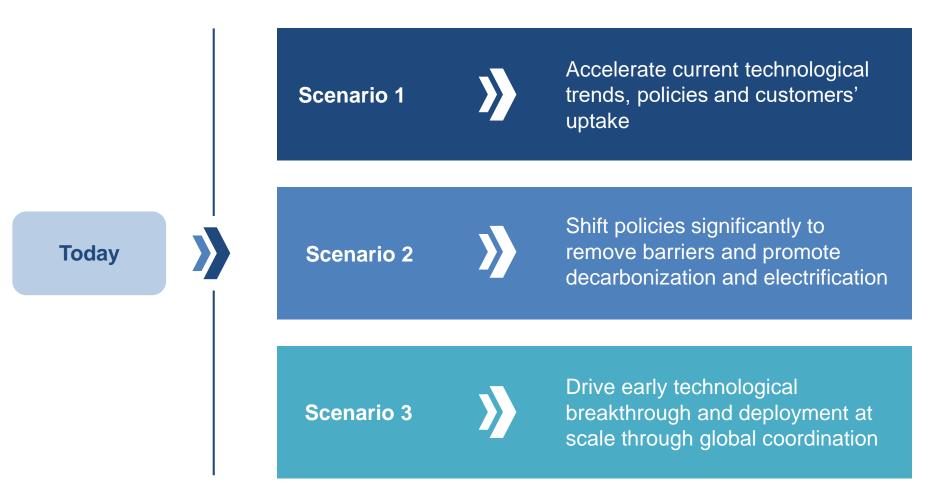
Current total direct electrification rates in Europe, across transport, industry and buildings, are 20-22%

Electrification ¹ in 2015	France and Benelux	Germany and Central Europe	Iberia	Italy	Nordics and Baltics	Poland	Southeastern Europe	UK and Ireland	Europe (total)
Transport 🚛	1%	2%	1%	2%	1%	1%	0%	1%	1%
Aviation	0%	0%	0%	0%	0%	0%	0%	0%	0%
Marine	0%	0%	0%	0%	0%	0%	0%	0%	0%
Rail	81%	75%	73%	95%	59%	69%	36%	35%	70%
Road Transport	0%	0%	0%	0%	0%	0%	0%	0%	0%
Buildings	38%	29%	52%	28%	47%	24%	35%	33%	34%
Commercial	52%	38%	66%	51%	59%	50%	64%	49%	50%
Residential	30%	23%	42%	18%	41%	13%	25%	26%	26%
Industry	29%	34%	35%	36%	41%	25%	30%	35%	33%
Iron & Steel	18%	28%	54%	37%	45%	31%	36%	21%	32%
Other Industry	33%	36%	33%	36%	40%	24%	32%	34%	35%
Chemicals	24%	31%	33%	36%	42%	28%	17%	47%	30%
Total	22%	22%	24%	21%	32%	18%	20%	21%	22%

Note: aggregated electrification rates are weighted based on TFC, by country, sector and sub-sector

_

1 Direct electrification defined as share of electricity consumption within Total Final Energy Consumption Source: 2015 IEA energy tables

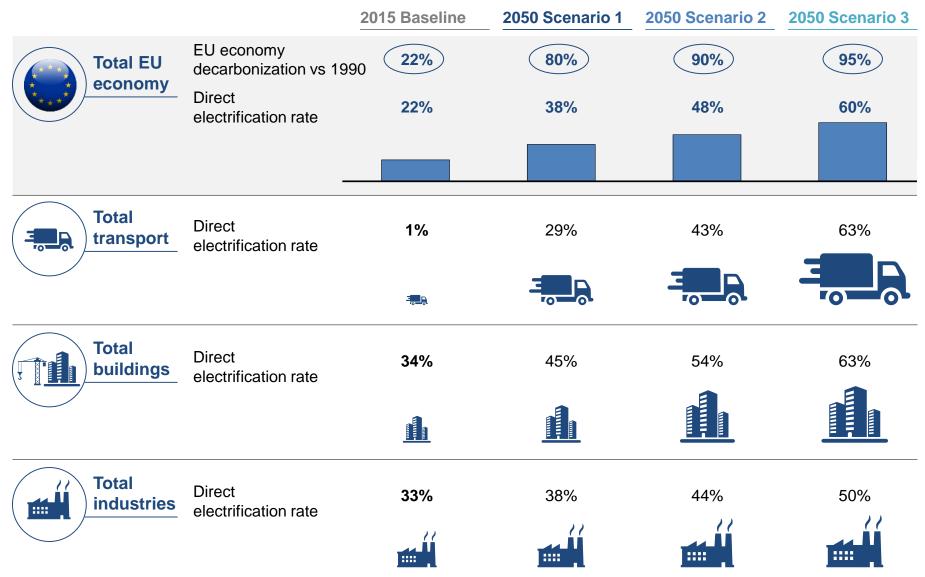

Infrastructure development

Electrification is pushing the frontiers of EU decarbonization

Introduction of new technologies

Transportation	•	Several e-truck models commercialized in 2018 for a variety of purposes (i.e., freight transport, garbage- collection vehicles) led by multiples manufacturers such as Volvo, Mercedes, DAF and Tesla First electric vessels are developing for freight transport in the Netherlands and e-ferries in Norway	•	Avinor announced plans for fully electric short-haul flights by 2040 Airbus, Rolls-Royce, and Siemens team up for the development of electric airplanes for short-haul, aimed for the mid 2030s Nearly doubling of investment in autonomous & electric vehicles (8.4\$B in 2014 to 15.2\$B in 2016) world wide	•	Tesla has installed more than 2,750 supercharger positions in the EU; In the meantime, wireless charging for EVs has been standardized across Europe in 2017 Sweden built first ever electrified road for charging vehicles as they drive (2km stretch)
Buildings		Nerdalize in the Netherlands is heating residential water using the heat generated from their cloud computing services	•	Drammen district heating in Norway provides 85% of hot water needed for the city. With low cost of hydro-based electricity, it is cheaper to run a heat pump than a gas or electric boiler	•	Hydeploy Consortium is aiming to blending up to 20% hydrogen with the UK gas moving towards further indirect electrification
Industry	•	Pilot projects for the electrification of cement production in Sweden Electrification of steel production using hydrogen (HYBRIT project) in Sweden	•	VoltaChem and TNO are developing technologies that focus on the conversion of renewable energy to heat , hydrogen and chemicals	•	Power-to-X alliance in Germany is investing up to 1.1B euros to facilitate production of green hydrogen and synthetic methane

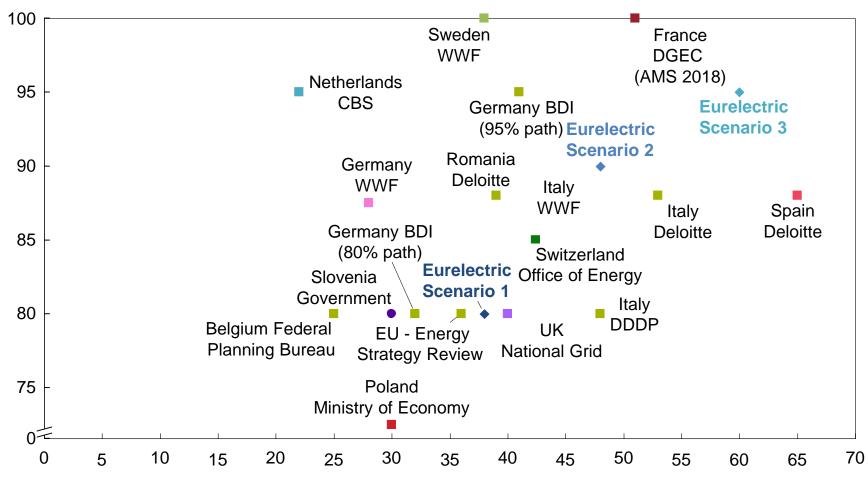
Scenarios are based on a combination of factors, including ambition, technology development, customer behavior and regulation



Key drivers and pre-requisites of the 3 scenarios

Main electrification drivers and key incremental changes between scenarios

	Scenario 1	Scenario 2	Scenario 3		
Ambition	 The EU takes bold steps to implement what it promised to deliver under the Paris Agreement: 80% emissions reduction versus 1990 	 EU opts for a more ambitious implementation of the Paris Agreement in the context of increased international coordination and ambitious review process: 90% emissions reduction 	 EU decides to fully decarbonize its economy by 2050 in a context of concerted efforts with decarbonization policies around the world which ensure a level playing field 		
Technology development	 Technology development is driven by acceleration of current trends and learning curves Low-carbon technologies available today increase their market share and are deployed across the EU economy 	 Early technology development and deployment: mature technologies experience steep cost reductions towards 2030 and new technologies that are coming to the market today are commercially deployed at a large scale across the economy after 2040 Some industrial processes are redesigned to reduce their emissions while more complex industrial processes remain challenging to decarbonize and electrify 	 Major technology breakthroughs: Early and major shift in cost reduction of currently non-mature technologies driven by high adoption of electric solutions, innovation, Research and Development Breakthrough technologies at an early stage of innovation today are commercialized at broad scale before 2040 		
Consumer behavior	 End user awareness and appetite for clean technologies increase but cost/convenience remain important limiting factors Taxes and levies hamper consumers' switch to electric solutions 	 Clean technologies progressively become mainstream and increasingly competitive for consumers Electricity is relatively competitive against other energy carriers, driving partial adoption in industry, while overall competitiveness of the EU industry is safeguarded 	 Fast and massive adoption of clean technologies by consumers across the world, driven by high competitiveness of electricity vs. other energy carriers; especially, early and fast adoption of electric solutions as they are readily available 		
Regulation	 Over time, policies -including CO2 emissions related policies and pricing- start driving market forces towards deployment of mature and maturing clean technologies and technology switch 	 Regulation on CO2-GHG emissions, environment, fossil fuels and infrastructure tightens Major shifts in policies, tariffs and taxes, driving earlier shift and removing current barriers to electrification 	 Implementation of regulations and mechanisms envisioned for scenario 2 now happens on a global scale Much earlier implementation of this regulation (vs. scenario 2) is needed to deliver on full decarbonization objectives by 2050 		

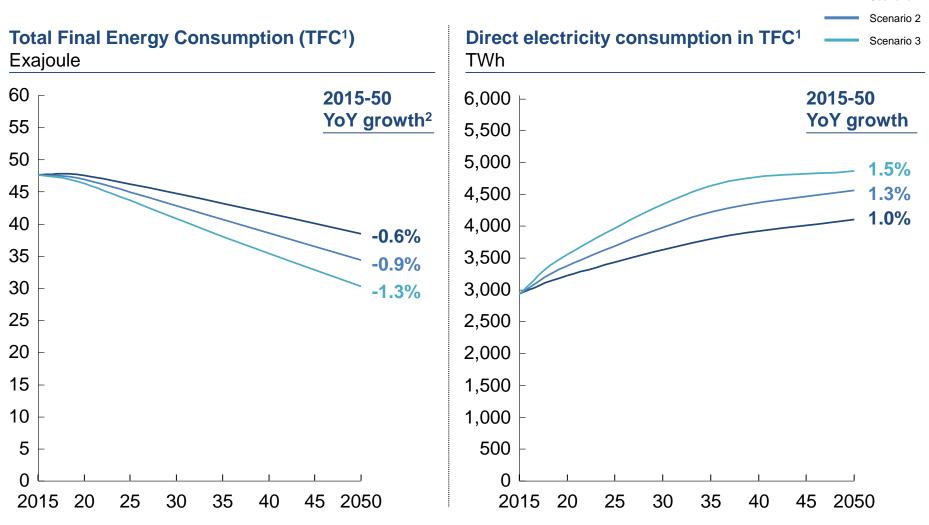

Direct electrification results by scenario

eurelectric scenarios against European benchmark

Decarbonization - 2050¹

% of emission reduction vs. 1990

Electrification rate - 2050 % of total energy demand

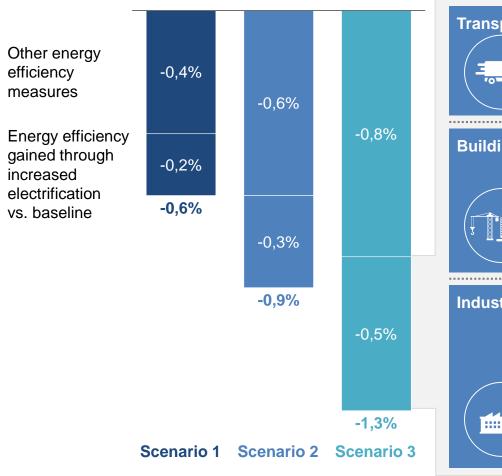

Netherland electrification data: 2035, Slovenia electrification data: 2030, Slovakia electrification data: 2035

Spain, Germany, Italy decarbonization rate is 80 – 95%

1 Decarbonization could be achieved through a combination of factors, including electrification but also energy efficiency and alternative carbon-neutral fuels, e.g., H2, biofuels, etc SOURCE: National reports (Utility, Government), NGO, Independent research agencies and think tanks

Scenario 1

Energy efficiency drives down final energy consumption significantly, while yearly direct electricity consumption increases by 1.0 to 1.5%

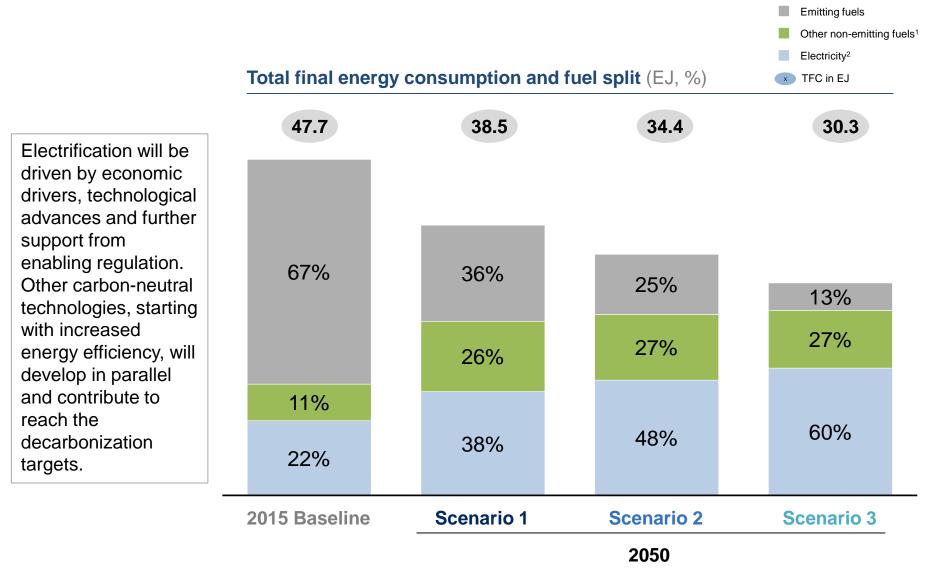


1 Includes 32 countries in scope: EU28 + EEA; ENTSOE report additionally includes Turkey and other Eastern European countries adding up to a total of ~3,300 TWh 2 Annual YoY TFC reduction adjusted to total GDP growth (as a proxy for increase in energy productivity) varies between 2% and 2.8% depending on scenarios

Deploying electric solutions is strongly contributing to the total energy efficiency gains

Drivers of energy efficiency gains

2015-2050 YoY reduction in TFC


Illustrations by sector

- Transport
- **Buildings**
- Industry

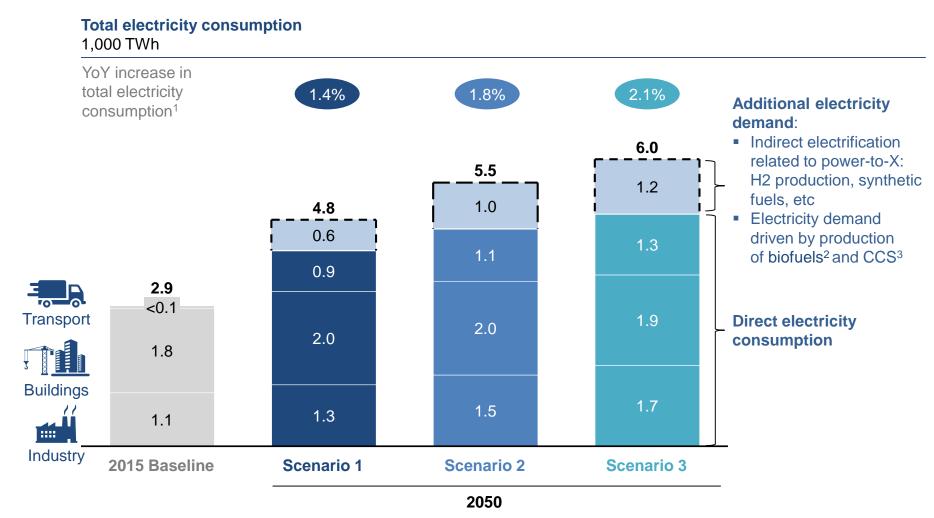
In passenger cars, EVs consume 25% of ICE vehicles' energy consumption

- For trucks, e-trucks consume ~50% of their diesel equivalents' own energy consumption
- In space heating, heat pumps' coefficient of performance (COP1) is 4-5x higher than the COP for typical gas boilers
 - In cooking, the energy intensity of electric solutions is 10% lower than for gas and down to 1/5 of the energy intensity of charcoal and wood
- For steel, electric arc furnace route using recycled steel is 5-6x less energy intense than traditional coal-based (blast furnace) production routes
- In other industry, electric solutions (e.g., heat pumps, hybrid boilers) can be between 100-300% more energy efficient for low temperature grades then their gas equivalents

A strong electricity uptake in total final energy consumption

1 Includes non-emitting primary fuels/sources such as geothermal, solar thermal, and biomass but also secondary fuels such as biofuels, synthetic fuels, hydrogen and others 2 Direct electricity consumption

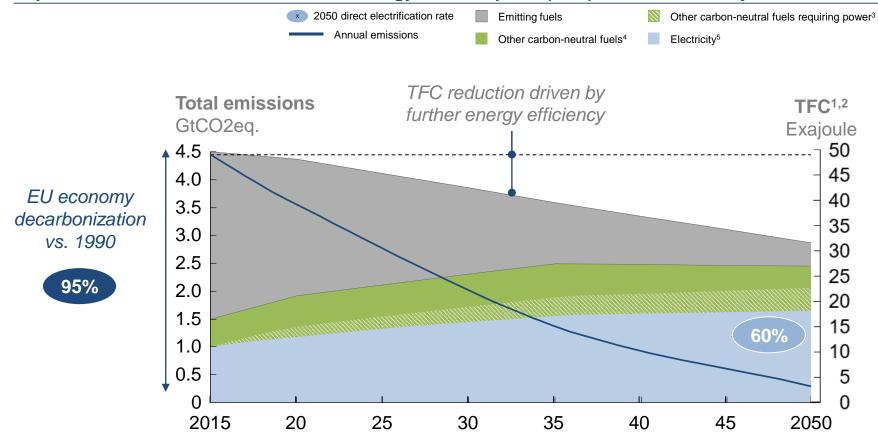
Total electricity demand is expected to increase beyond envisioned direct electrification


Total electricity demand

YoY increase in total electricity consumption in TFC

	Definition	Scenario 1	Scenario 2	Scenario 3
Direct electricity demand	Direct use of electricity as an energy carrier (e.g. power consumed by households, road transportation, etc.)	1.0%	1.3%	1.5%
Indirect electricity demand for power-to-X	Power demand to produce hydrogen (via electrolysis), gas and other synthetic fuels which can then be used to decarbonize certain industry processes or as a fuel for transports	0.3%	0.4%	0.5%
+ Additional electricity demand for other decarbonization	Power required for CCS ¹ and to produce other clean fuels/feedstock (e.g. biofuels)	0.1%	0.1%	0.1%

1 Total CO2 abated through CCS: <200 Mt Co2; CCS may require technology improvement as well as increasing acceptability, e.g., for underground storage


Strong electricity uptake in all sectors, with strongest increase in transport

Includes both direct and indirect electrification (power-to-X) as well as electricity demand driven by production of CCS and biofuels
 Biofuels require feedstock as well as additional energy (either in form of thermal energy or power) for their production – see glossary
 Total CO2 abated through CCS: <200 Mt Co2; CCS may require technology improvement as well as increasing acceptability, e.g., for underground storage

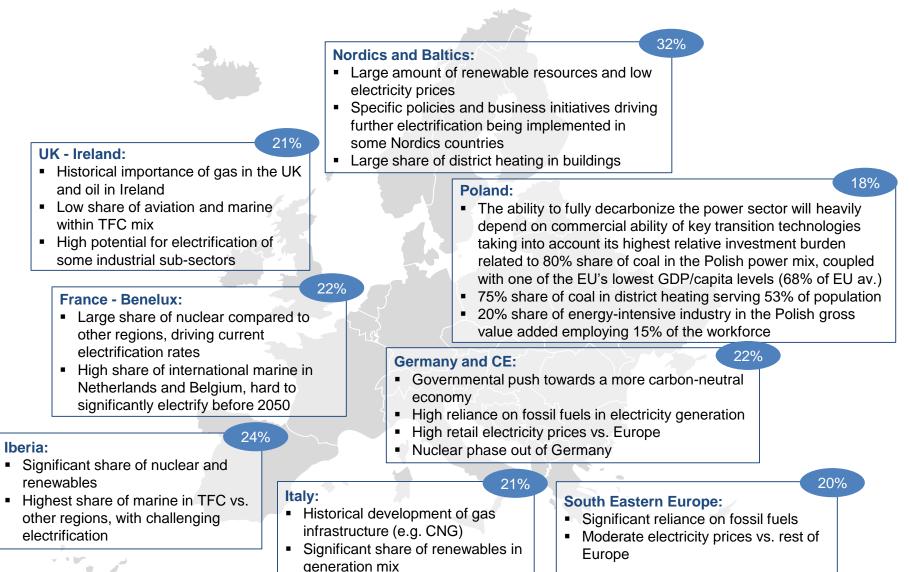
95% decarbonization through strong electrification, energy efficiency, and support from other non-emitting fuels

Impact of electrification on Total Final Energy Consumption (TFC) and EU economy emissions

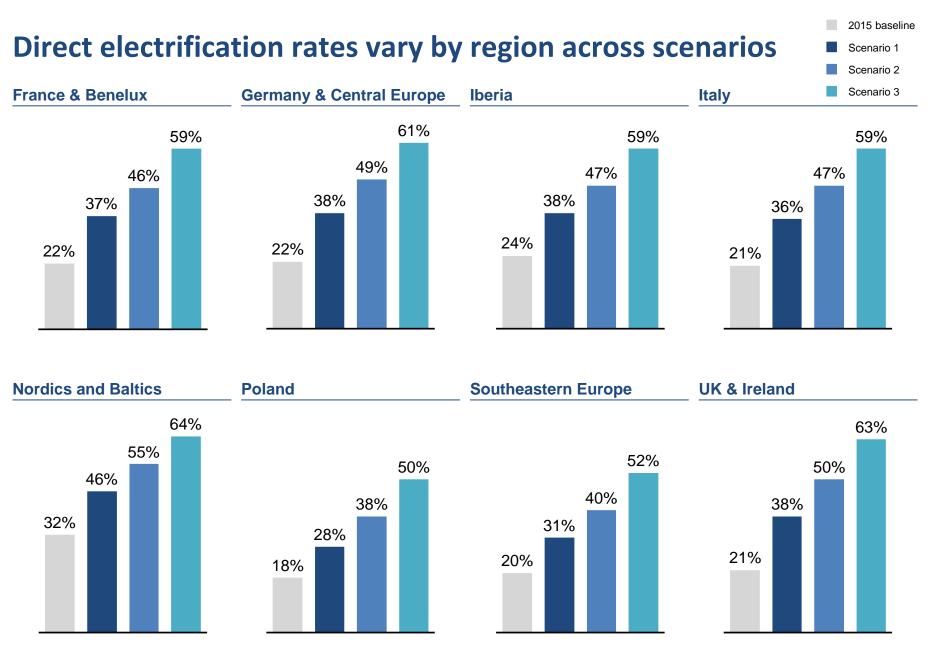
1 Includes 32 countries in scope: EU28 + EEA; ENTSOE report additionally includes Turkey and other Eastern European countries adding up to a total of ~3,300 TWh 2 Electricity consumption from transformation sectors not included; 3 Includes non-emitting fuels that trigger indirect electrification through power-to-X (H2, synth fuels) as well as non-emitting fuels that trigger increased electricity demand to be produced such as biofuels; 4 Includes all other non-emitting fuels/sources such as geothermal, solar thermal, and others; 5 Direct electricity consumption 22

Implementation of envisioned electrification and decarbonization will require to overcome some challenges, especially in scenario 3

- Expected annual energy productivity gains vary from 2% to 2.8% depending on scenario. 1/3 of this increase in energy efficiency is driven by electrification; capturing the other 2/3 of these expected energy efficiency gains would require to remove the current observed barriers to adoption and implementation of energy efficiency measures
- Ambitious decarbonization in scenario 3, especially of industry (around 80% versus 1990), might come at an extra cost versus existing emitting technologies
- Significant technology progress and breakthroughs have to materialize in the timeframe considered, such as the production of cost-competitive and clean H2 and synthetic fuels at scale
- Required ramp-up in supply chain and infrastructures for electric solutions development and deployment has to be secured to effectively support adoption of electric solutions
- Acceptability challenges, for instance for CCS, would need to be addressed


eurelectric

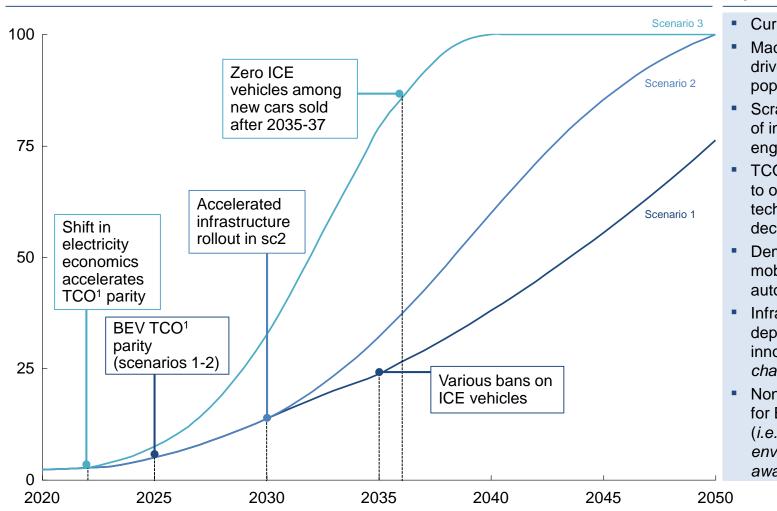
Scenarios – Regional perspectives



Different starting points in the energy transition

2015 baseline – direct electrification rate

eurelectric


Scenarios – Perspectives by sector – Transport

Favorable TCO¹ and regulatory push drive up-take of electric vehicles in passenger cars across our 3 scenarios

Share of battery electric vehicles (BEVs) in new sales in the EU

Percent

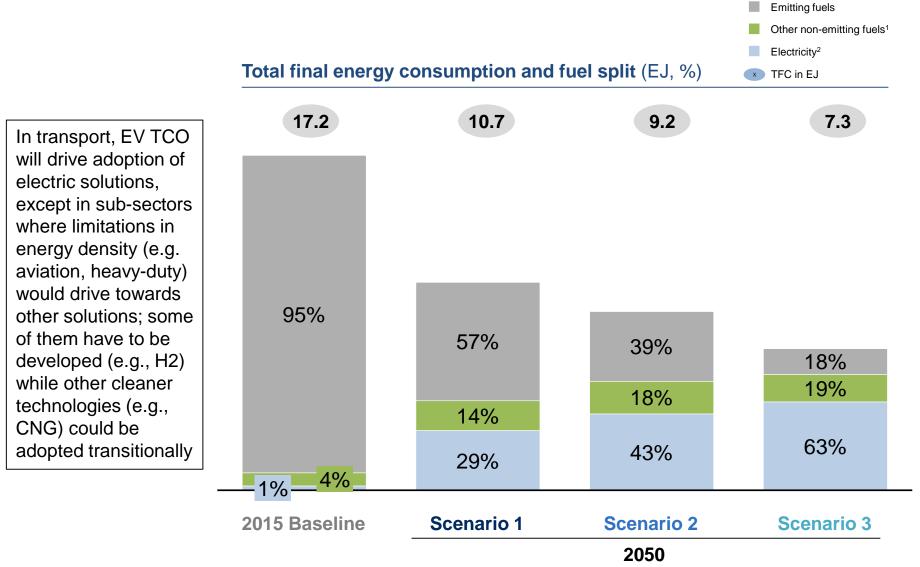
Key drivers of BEVs sales

- Current fleet
- Macro-economic drivers: GDP, population growth
- Scrap rates, especially of internal-combustionengine (ICE) vehicles
- TCO of BEVs relative to other competing technologies, driven by decreasing battery cost
- Demand for shared mobility and autonomous driving
- Infrastructure deployment and innovation (i.e. wireless charging)
- Non-economic drivers for BEV acquisition (*i.e. regulation*, *environmental awareness*)

Electrification of passenger cars requires a strategic charging infrastructure build-up

				2050 scenarios	
		2015 baseline	Scenario 1	Scenario 2	Scenario 3
Electric	EVs in fleet	~0.5 million	~88 million	~100 million	~130 million
vehicles	Share of EVs in fleet	< 1%	65%	80%	96%
production and fleet	Installed battery manufacturing capacity ¹	~10 GWh	~700 GWh	~840 GWh	~840 GWh
Electricity	Km driven by	10 billion	2.5 trillion	2.8 trillion	3.1 trillion
consumption	EVs per year Consumption by EVs per year (% of passenger cars TFC)	~1.5 TWh	~250 TWh (42% of TFC)	~260 TWh (66% of TFC)	~256 TWh (94% of TFC)
Charging	Charging points	~0.5 million	~80 million	~85 million	~65 million
infrastructure	Fast charging	1%	5%	15%	50%
	Slow charging office & public	6%	10%	30%	35%
	Slow charging home	93%	85%	55%	15%
Key drivers across scenarios	More systematic deIncreasing adoption	ployment of smart ch of shared mobility, r	narging services reducing total fleet size whi	, engines energy efficiency, p ile increasing VKT per vehicl and charging from mostly sk	e

 Development of autonomous driving, shifting consumers' behavior and charging from mostly slow-charging at home to fast charging stations


Resulting electrification by sub-sector (1/2)

		2015 Baseline	2050 Scenario 1	2050 Scenario 2	2050 Scenario 3
		0%	42%	66%	94%
Passenger cars	Direct electrification rate				
	Share in new sales	1%	75%	100%	100%
		<1%	65%	80%	96%
	Share in fleet		00	00	00
		0%	24%	29%	48%
Trucks	Direct electrification rate				
		0%	29%	39%	58%
Buses	Direct electrification rate				

Resulting electrification by sub-sector (2/2)

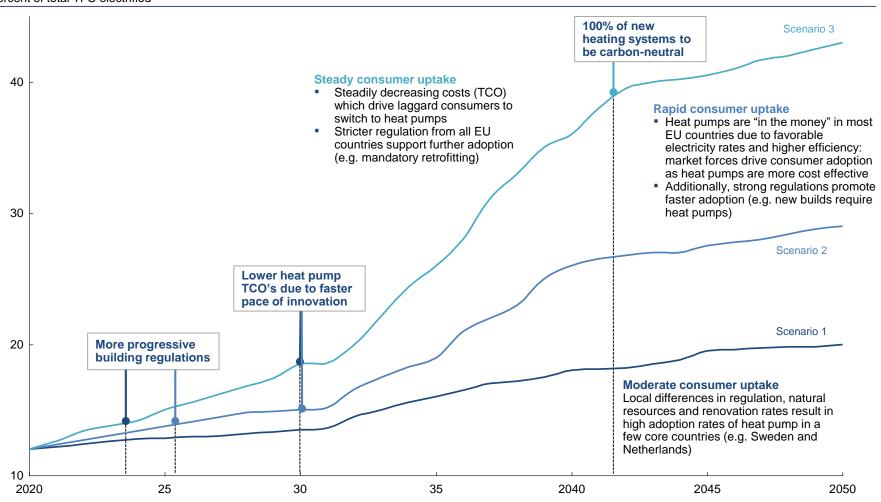
		2015 Baseline	2050 Scenario 1	2050 Scenario 2	2050 Scenario 3
		0%	0%	2%	5%
Aviation	Direct electrification rate		堂		
-		0%	2%	6%	11%
Marine	Direct electrification rate		平 <u>人</u>	<u></u> 唐	
		70%	73%	80%	93%
Rail	Direct electrification rate				
	Direct electrification rate	1%	29%	43%	63%
Total transport	Total electricity demand as part of TFC ¹	1%	34%	48%	67%
	110				

Transport total final energy consumption - breakdown by scenario

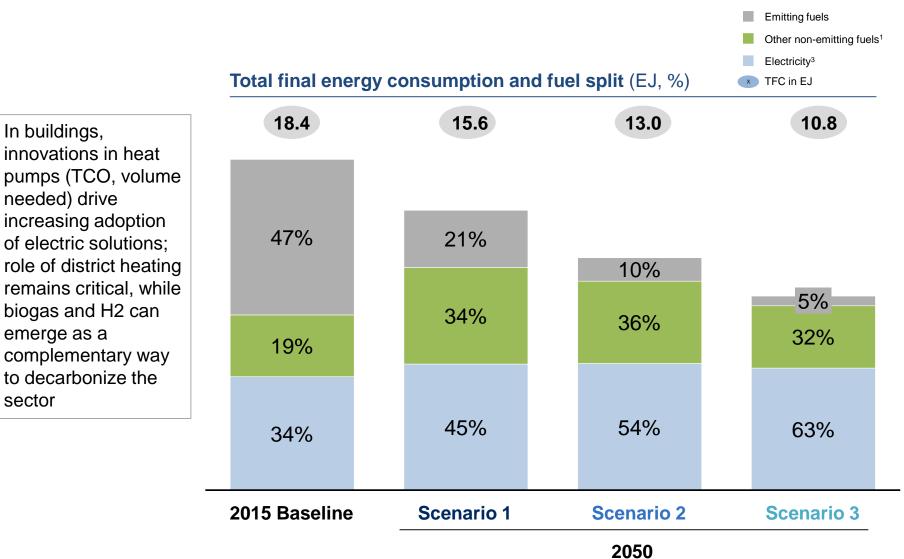
1 Includes non-emitting secondary fuels such as biomethane, biodiesel, bioethanol, hydrogen and others 2 Direct electricity consumption

Scenarios – Perspectives by sector – Buildings

Resulting electrification by sub-sector – Commercial


		2015 Baseline	2050 Scenario 1	2050 Scenario 2	2050 Scenario 3
		16%	25%	43%	53%
Space heating	Direct electrification rate				
Water		15%	25%	43%	53%
heating	Direct electrification rate				
		20%	75%	90%	95%
Cooking	Direct electrification rate				

Resulting electrification by sub-sector – Residential

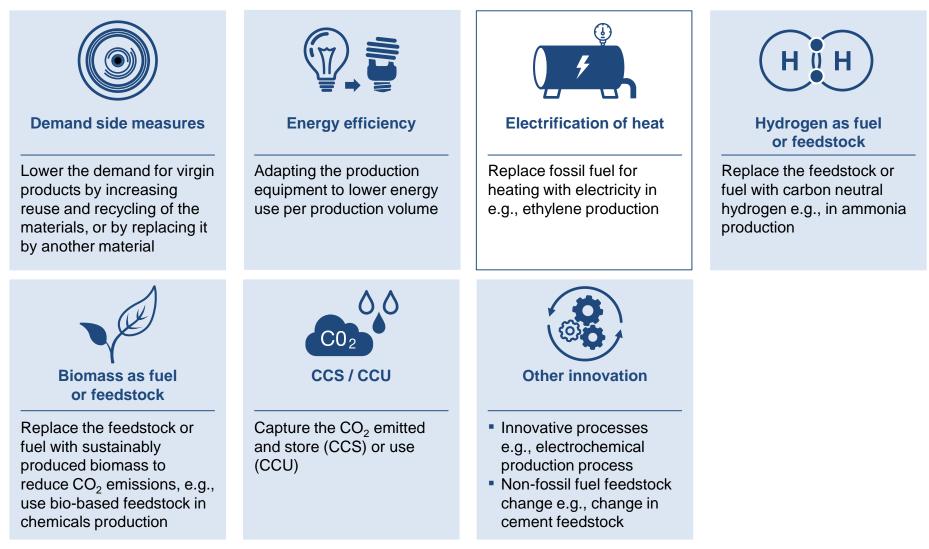

2015 Base	ine 2050 Scenario	2050 Scenario 2	2050 Scenario 3
8%	21%	32%	44%
t electrification			
11%	22%	32%	44%
t electrification			
26%	5 75%	90%	95%
t electrification			
ification rate	45%	54%	63%
and as part of 34%	45%	56%	64%
	8% t electrification 11% t electrification 26% t electrification t electrification 34%	8% 21% t electrification 11% 11% 22% t electrification 11% 26% 75% t electrification 11% 26% 75% t electrification 11% 45% 45%	8%21% 32% t electrification $\frac{11\%}{22\%}$ 32% t electrification $\frac{11\%}{22\%}$ 32% t electrification $\frac{26\%}{75\%}$ 90% t electrification $\frac{26\%}{25\%}$ 75% t electrification $\frac{26\%}{25\%}$ 54%

Changes in heat pump economics are driving adoption of electrification in space heating for buildings

Heat pump market share of space heating Percent of total TFC electrified

Buildings² total final energy consumption - breakdown by scenario

1 Includes non-emitting primary fuels/sources such as geothermal, solar thermal, and biomass but also secondary fuels such as biofuels, synthetic fuels, hydrogen, heat and others


2 Buildings includes all end uses (i.e. space and water heating, cooking, appliances, space cooling and lighting)

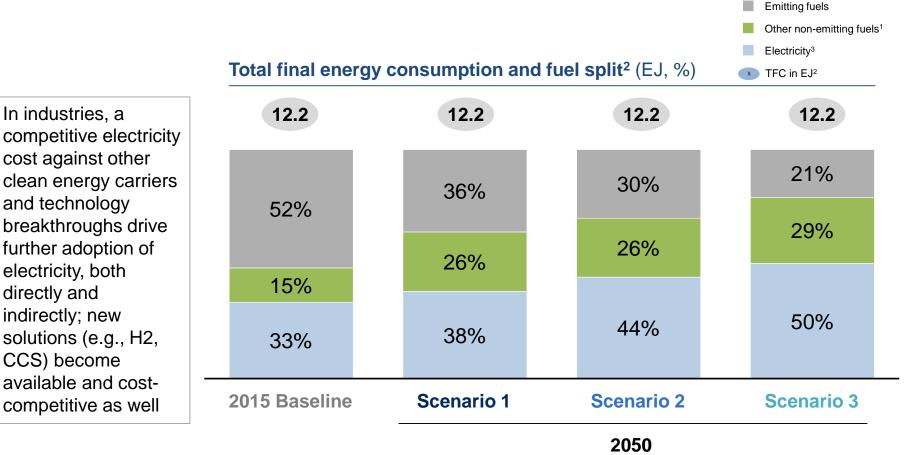
3 Direct electricity consumption

Scenarios – Perspectives by sector – Industry

Electrification is expected to play a major role, as part of the 'menu' of options that could address the industry CO₂ emission

Direct electrification is mostly relevant for the cement and ethylene sectors as well as for industries supplied by fuel Applied at industrial scale sites

1 Includes manufacturing, construction, food and tobacco, etc.; 2 CCS may require technology improvement as well as increasing acceptability, e.g., for underground storage;

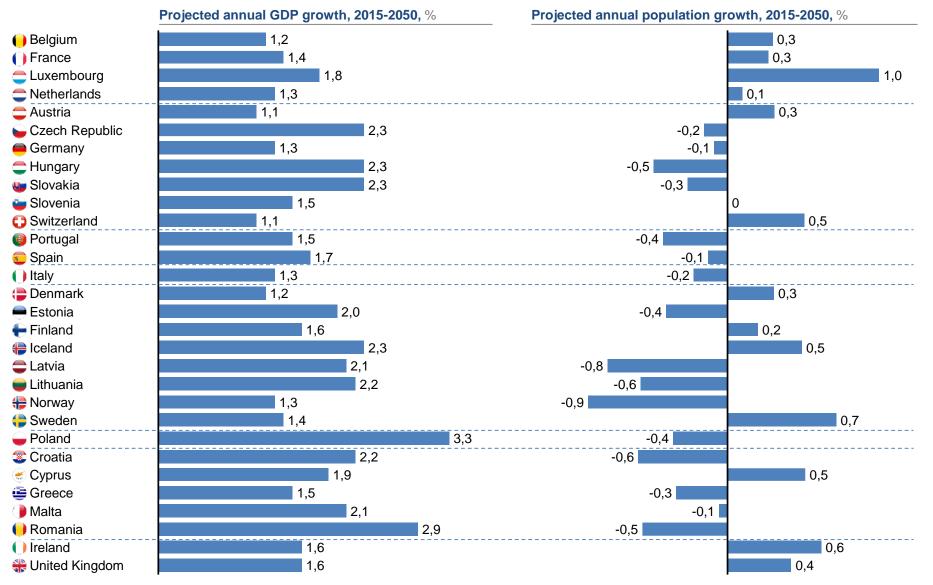

3 Not exhaustive; 4 Technological maturity depends on the type of alternative feedstock

SOURCE: Report "Energy transition - Mission impossible for the industry ?" (McKinsey, 2018)

Resulting electrification by sub-sector

		2015 Baseline	2050 Scenario 1	2050 Scenario 2	2050 Scenario 3
Chemicals	Direct electrification rate	30%	35%	36%	39%
Iron & Steel	Direct electrification rate	32%	38%	39%	42%
Other industries	Direct electrification rate	35%	39%	47%	55%
Total industries	Direct electrification rate Total electricity demand as part of TFC ¹	33% 33%	38% 45%	44% 53%	50% 60%

Industry final energy consumption - breakdown by scenario


<u>Note</u>: In addition to being energy carriers, some fossil fuels are used as feedstock: e.g., oil is an essential raw material for the production of plastics, gas can be used to foster chemical reactions, and coal as a reductant for certain processes in metal production. The usage of these fuels as feedstock is also expected to decarbonize partially as industry processes evolve and replace these emitting feedstocks with non-emitting alternatives, e.g. biofuels and hydrogen, accounting for 21% to 27% of total feedstock by 2050.

1 Includes non-emitting primary fuels/sources such as geothermal, solar thermal, and biomass but also secondary fuels such as biofuels, synthetic fuels, hydrogen, heat and others 2 Excluding additional TFC from indirect electrification (e.g. hydrogen production, CCS, biofuel production, etc.), 3 Direct electricity consumption

eurelectric

Appendix

Macroeconomics differ by region but are constant across scenarios

SOURCE: McKinsey & Company Global Energy Perspective 2018; IT, ES, PT, GR, PL and CZ changed according with government publications, OECD, FMI or other national entities

Glossary (1/3)

- Total Final Consumption: Net amount of energy consumed by the different end-use sectors at the point of consumption (e.g. oil used for heating, electricity used for appliances, coal used for industrial processes, etc.) [in terajoules]
- Electrification: Share of electricity in Total Final Consumption (TFC) of Energy [Percent]
- Direct electrification: Direct use of electricity as an energy carrier (e.g. power consumed by households, road transportation, etc.)
- Indirect electrification: Power demand to produce hydrogen (via electrolysis), gas and other synthetic fuels which can then be used to decarbonize certain industry processes or as a fuel for transports. Examples of applications include steel-production (e.g. hydrogen-DRI-EAF route), chemicals industry (e.g. Ammonia production), or transport fuels (e.g. hydrogen fuel for long-haul truck transport)
- Additional electricity demand for other decarbonization: Production of fuels or feedstocks can require power, when these are used to replace other carbon emitting fuels or feedstocks, in an effort to decarbonize certain industrial processes or energy usages. Examples include the production of some bio fuels. (Note: electricity used to power district heating only will be considered in phase 2)

Glossary (2/3)

- Bioenergy: Energy content in solid (biomass), liquid (biofuel) and gaseous (biogas) fuels derived from biomass feedstocks, biogas and waste
- **Biofuels:** Liquid fuels derived from biomass or waste feedstocks, mostly ethanol and biodiesel
- Biogas: A mixture of methane and other gases produced by the anaerobic bacterial breakdown of organic matter such as agricultural waste, manure, municipal waste, plant material, sewage, green waste or food waste
- **Bio methane:** Biogas that has been cleaned and upgraded to natural gas standards
- Buildings: The buildings sector consumes energy mostly in residential, commercial and institutional buildings via space heating and cooling, water heating, lighting, appliances and cooking
- Commercial: Energy consumed by commercial (e.g. hotels, offices, catering, shops) and institutional buildings (e.g. schools, hospitals, offices)
- Decarbonization: Reduction of total cross-sectoral CO2eq. emissions (incl. land-use, agriculture, waste management) between 1990 and 2050 [Percent]
- Efficiency factor heat pumps vs. other: A factor of e.g. 400% considered for heat pump's efficiency relates to the relative efficiency of the average heat pump to fossil fuel boilers (i.e., a heat pump is 4x more efficient than a fossil fuel boiler)
- Green gas: Synonym for bio methane (see bio methane)

Glossary (3/3)

- Hydrogen from methane reforming: Hydrogen that is being produced by removing the carbon content from methane (in the context of decarbonization this carbon content is then being captured and either stored or used)
- Hydrogen from electrolysis: Hydrogen that is being produced via electrolysis (consumes roughly 2.5 GJ of electricity per GJ of hydrogen, efficiency of 40%) - no carbon emissions arise in the process
- Industry: Includes energy consumed across all industrial sectors (e.g. iron and steel, chemical and petrochemical, cement, and pulp and paper) but excludes consumption by industries for the generation of power or transformation of energy (e.g. refining)¹
- Power-to-X: Power-To-X identifies technologies that transform surplus electric power (typically from renewable resources) into material energy storage, energy carriers, and energy-intensive chemical products. The term X can refer to one of the following: power-to-heat, power-to-gas, power-to-hydrogen, power-to-liquid, etc.
- Residential: Energy consumed by households (urban and rural)
- **Resistance heating:** Refers to direct electricity transformation into heat through the joule effect
- Synthetic fuels: Synthetic fuels or synfuels are liquid or sometimes gaseous fuels obtained from syngas. Syngas is a mixture of carbon monoxide or carbon dioxide and hydrogen, won via electrolysis from water
- Transport: Energy consumed in the transport sector by moving goods and persons irrespective of the economic sector within which the activity occurs

Abbreviations

- BEV Battery electric vehicle
- CCS Carbon capture and storage
- CCU Carbon capture and utilization
- CE Central Europe
- CNG Compressed natural gas
- CO₂ Carbon dioxide
- CO₂-eq Carbon dioxide equivalent
- EU European Union
- EU ETS European Union Emissions Trading Scheme
- EV Electric vehicle
- GHG Greenhouse gas
- H₂ Hydrogen
- ICE Internal combustion engine
- LNG Liquified natural gas
- NG Natural gas
- TCO Total cost of ownership
- TFC Total final consumption

Units and Conversion factors

- Units
 - **GJ** gigajoule (1 joule \times 10⁹)
 - **TJ** terajoule (1 joule x 10^{12})
 - **PJ** petajoule (1 joule x 10^{15})
 - **EJ** exajoule (1 joule x 10^{18})
 - kWh kilowatt-hour
 - MWh megawatt-hour
 - GWh gigawatt-hour
 - TWh terawatt-hour
 - MtCO2 (1 ton of CO2 x 10⁶⁾
 - GtCO2 (1 ton of CO2 x 10⁹⁾

One last word

eurelectric wanted to thank stakeholders who contributed to this study by sharing their perspectives, vision, analysis and knowledge. In particular:

- All eurelectric members and experts involved throughout the study, providing inputs and guidance
- McKinsey & Company who provided analytical support to this study
- All external stakeholders who joined our workshops in Brussels on April 25th: AEBIOM, Aurubis, AVERE, BELLONA EUROPA, BEUC, BUSINESSEUROPE, CEFIC, Cerame-Unie, CAN Europe, COGEN Europe, CEPI, EDSO for Smart Grids, ENTSOG, EPHA, EURIMA, EUROFER, Eurogas, EUROHEAT & POWER, EuroMetaux, European Climate Foundation, European Copper Institute, FORATOM, FuelsEurope, International Association of Oil & Gas Producers, IRENA, OGP Europe, Regulatory Assistance Project, Sandbag Climate Campaign, Tesla, Transport & Environment, WindEurope

Decarbonisation pathways Part 2 - European power sector

EU electrification and decarbonisation scenario modelling November 2018

eurelectric

Introduction and methodology

Focus for this report

Context and objectives of this study

Context

The EU has committed to at least 40% emissions reduction below 1990 level by 2030, and has further set an aspiration of 80-95% reduction by 2050. To achieve this, all sectors must contribute.

Cost-effective decarbonization is crucial if Europe is to remain competitive in the global market

place and are committed to leading this transition.

In its new vision published earlier this year, the electricity sector made a pledge to become carbon neutral well before mid-century, taking into account different starting points and commercial availability of key transition technologies. Competitive electrification is a way to accelerate decarbonization in other sectors of the economy.

1

In the second phase of this project we have analysed in detail the **decarbonization pathways to drive the power sector** towards **carbonneutrality well before 2050** at the lowest possible cost for each of our three EU decarbonization and electrification scenarios.

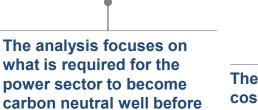
The report from phase 1 of this study can be found on the Eurelectric web site: https://www.eurelectric.org/news/decarbonisation-pathways-electrification-part/

Objectives

With a view to achieving this vision and to making a meaningful contribution to the EU's climate ambition **eurelectric** has in the first phase of this project developed three EU decarbonization and electrification scenarios towards 2050 for the main energyusing sectors.

Key messages

- Our analysis shows that the European power sector can be fully decarbonized by 2045 in a cost-effective way. We expect the cost of wholesale electric supply in a fully decarbonized system to be 70 – 75
 EUR/MWh including storage, which is significantly lower than previous estimates. The transformation will require increased investment levels, but due to rapid cost declines in renewables the overall cost of carbonneutral electricity generation has been reduced significantly in recent years.
- The least-cost electricity system that can achieve carbon neutrality have four key characteristics:
 - Very high penetration of renewables and significant transmission build. Renewables, including hydro and sustainable biomass, will represent >80% of electricity supply by 2045 driven by rapid cost decline and large untapped resource potentials. High transmission build allows the benefits of renewables to be shared across Europe
 - System reliability and flexibility needs provided by multiple sources in the power sector and from other industrial sectors. These include hydro, nuclear power and gas, and emerging sources deployed at scale such as demand side response, battery storage, hydrogen electrolysis and power-to-X
 - Changing role of fossil generation. Fossil electricity supply will be gradually phased out and represent only ~5% of total supply by 2045. However, gas will still represent ~15% of total installed capacity to contribute to system reliability, especially in regions that don't have access to hydro or nuclear
 - Decreasing costs of carbon neutral technologies and innovation to abate the last tons of CO2 emissions (e.g. CCS, negative emissions) coming from the marginal use of the remaining thermal capacity such as negative emissions and CCS technologies


Key messages

- Achieving this ambitious objective will require the fast implementation of six enablers across society:
 - Political commitment to deep decarbonization across all sectors of the economy and across regions. Continued efforts to integrate the European energy system
 - Active involvement of citizens e.g. through demand response and prosumers and increased social acceptance for high renewables build out and new transmission lines
 - Synergies with other sectors. For example, P2X and H2 production enable decarbonization of other sectors while providing balancing capabilities to the power system. Existing gas pipeline infrastructure can be repurposed for power to gas and hydrogen transport and storage
 - Efficient market-based investment frameworks and adequate market design to trigger investments in a high renewables-based system. For example, resources must to a larger extent be valued based on their contribution to system reliability. Meaningful CO₂ price signals will also be required to sufficiently incentivize full decarbonization
 - A smarter and reinforced distribution grid that integrates new market participants (e.g. decentralized solar PV and local flexibility sources), and plays a significant role in consumer empowerment through managing local congestions and redispatch, security of supply and grid resilience issues
 - The path and investments required to reach full decarbonization differs by country as European regions have different existing electricity mix and resources available. To ensure just energy transition support and dedicated EU funding will be required for Member States that face a more difficult starting point in the electrification and energy transition journey.

Our analysis builds on a granular multi-factor approach

 Promote a sustainable and healthy society for European citizens, through carbon neutral electricity and enhanced cities' air quality, esp. through electrified transportation

2050 with a view to

 Secure long-term affordable, reliable and flexible electricity supply to all Europeans

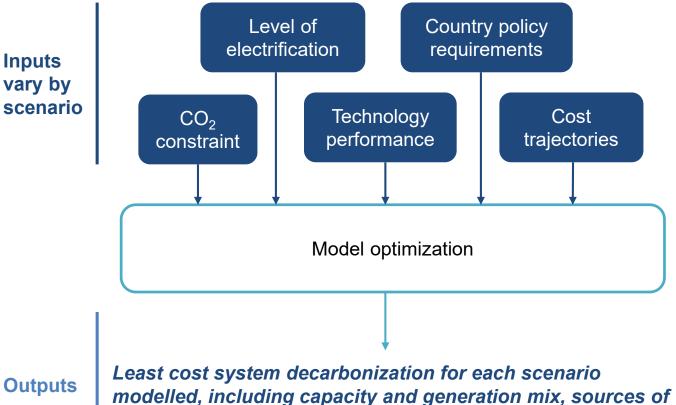
The study is based on least cost optimization model

that identifies the European power system that minimizes costs and achieves carbon neutrality well before 2050. We optimize along several dimensions including generation and capacity mix and sources of system flexibility incl. demand side response and storage In addition we test these results against marketrelated and political realities, e.g. national renewable targets, government nuclear decommissioning plans, and generation capacity under construction

Outputs from this multifactor analysis were syndicated through a very comprehensive stakeholder engagement with all eurelectric members as well as with external stakeholders through

workshops and discussions

sector and industry


with relevant stakeholders by

Our study is based on a rigorous modelling exercise

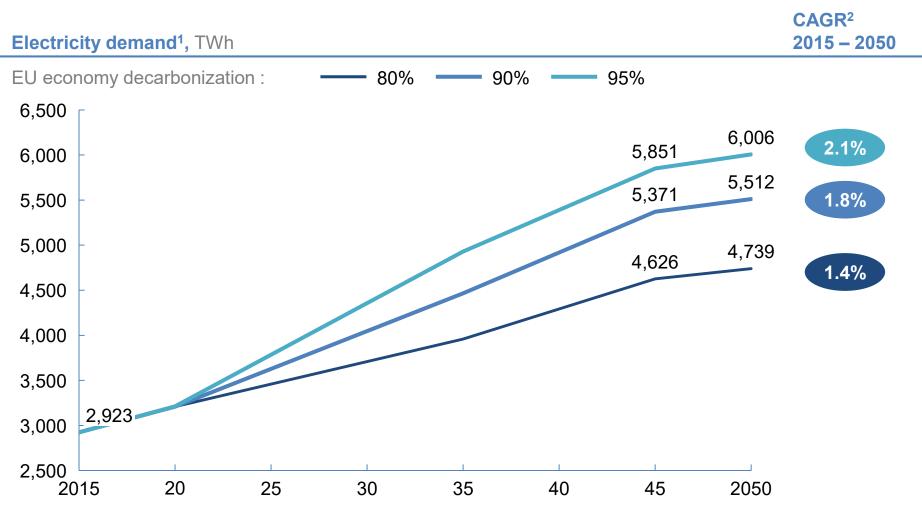
- The model determines which power sector investments and operating decisions minimize costs while meeting the target of full carbon neutrality
- We model solutions for 8 European regions


Outputs

Inputs vary by

flexibility, cost and investment required

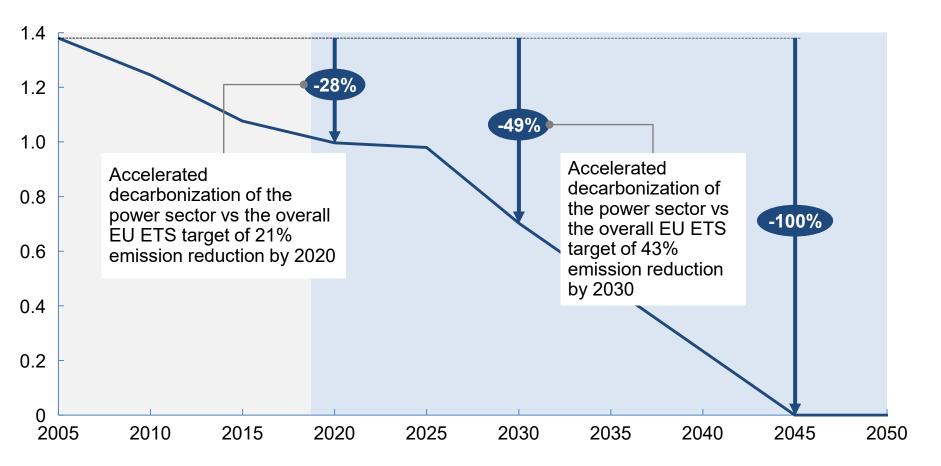
We have modelled 3 deep decarbonization scenarios based on electrification of key economic sectors



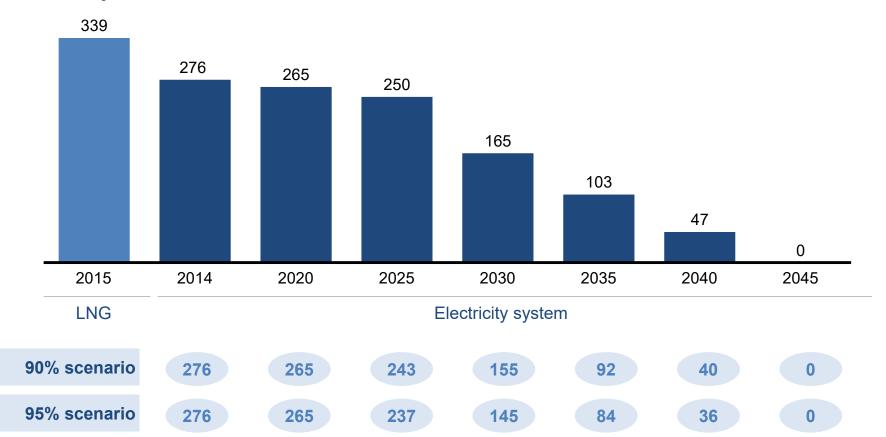
Cost breakthrough scenario in which we are driving towards full EU economy decarbonization. Assumes accelerated cost decline for renewables, nuclear, CCS and storage

1 Emissions out of scope are expected to contribute proportionally to the decarbonization effort required in each scenario

2 Decarbonization will be different by sector depending on relative costs and available technologies, industry contributing least with below 80% of emission reduction in all scenarios


We consider three levels of final electricity demand which correspond to different levels of EU economy decarbonization

1 Including indirect electricity demand for P2X and H2 production used in other sectors 2 Compounded annual growth rate


In all three scenarios, the European power sector is carbon neutral by 2045

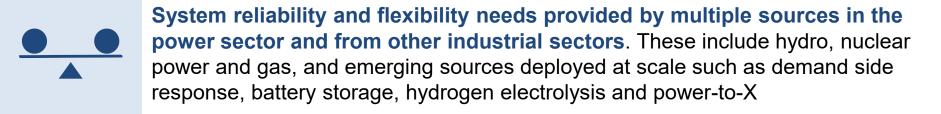
CO₂ emissions from power sector in all scenarios, GT CO₂

Electricity will continue to be the energy carrier with lowest carbon content per MWh going forward

Carbon intensity of electricity supply, g/KWh

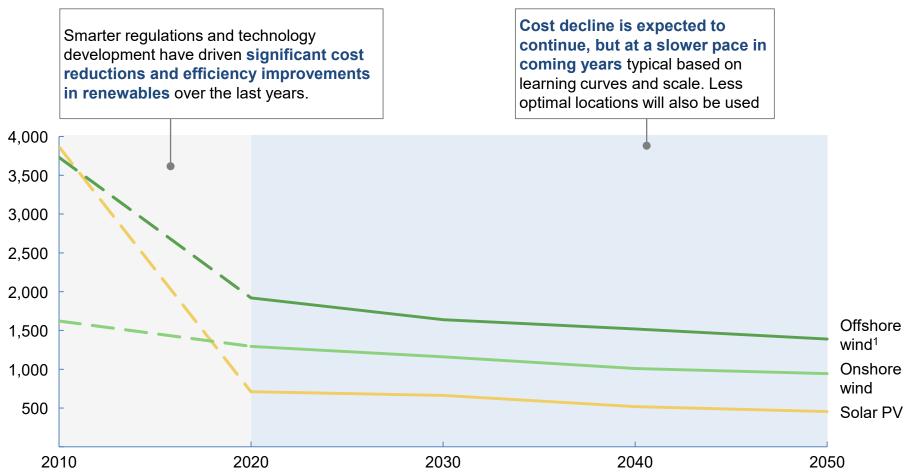
80% EU economy decarbonization

eurelectric


Power sector decarbonization scenarios

By 2045 we envision a carbon neutral power sector that makes a significant contribution to decarbonization of the EU economy

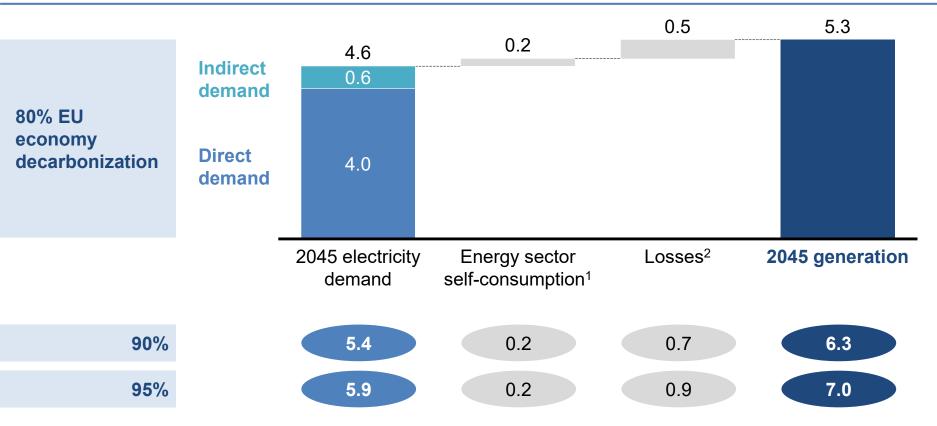
High penetration of renewables and transmission build will be the main driving force of the European energy transition. Renewables will represent >80% of electricity supply driven by large untapped potential and rapidly declining cost


Changing role of fossil generation. Fossil electricity supply will be gradually phased out and represent only ~5% of total supply by 2045. However, gas will still represent ~15% of total installed capacity to contribute to system reliability, especially in regions that don't have access to hydro or nuclear

Decreasing costs of carbon neutral technologies and innovation to abate the last tons of CO2 emissions (e.g. CCS, negative emissions) coming from the marginal use of the remaining thermal capacity such as negative emissions and CCS technologies

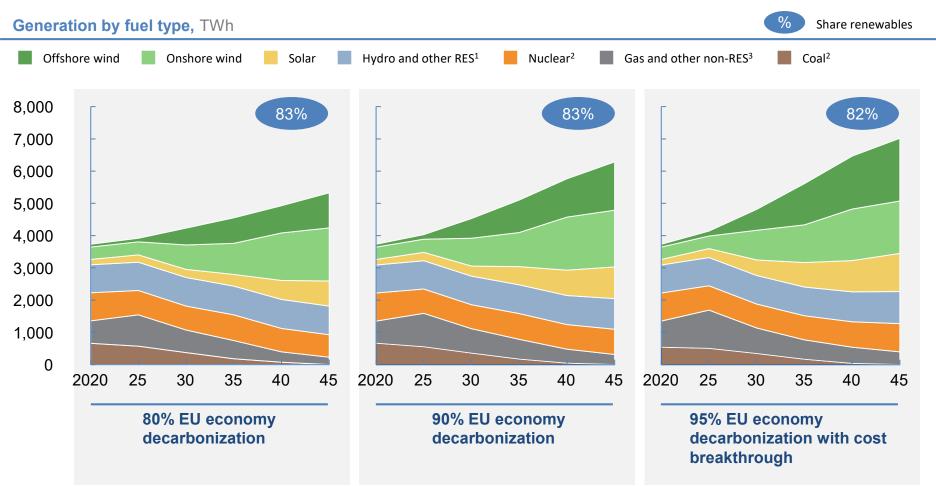
Renewables have seen massive cost reductions over the past decade and decline is expected to continue

Capex by technology, EUR/KW

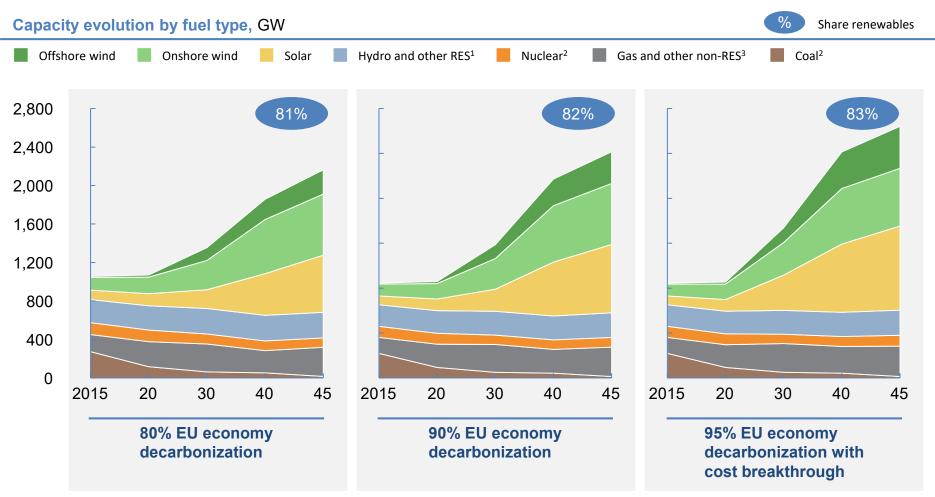


1 It refers to shallow water

SOURCE: IRENA ("Renewable Power Generation Costs in 2017") for historical data; ASSET Project ("Technology pathways in decarbonisation scenarios") and Danish Energy Agency (Technology Data for Energy Plants for Electricity and District heating generation) for future projections


Total power generation is higher than end use electricity demand to account for losses and energy sector self-consumption

Electricity demand and generation, 1000 TWh


1 Includes power sector self consumption (electricity, CHP, heat plants), consumption in oil and gas extraction, in petroleum refineries and in coal mines 2 Includes grid and battery storage losses

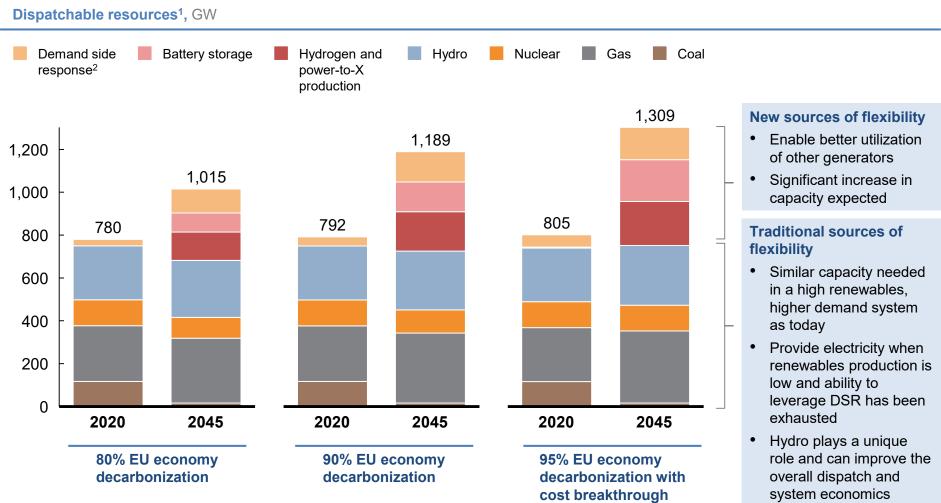
In the least-cost, carbon neutral electricity system the bulk of electricity is provided by renewables and nuclear

1 Includes also small amounts of geothermal, biomass and biogas 2 National policies on nuclear and coal phase out have been reflected 3 Up to 15% of gas capacity with CCS and other non-renewables

Renewables account for ~80% of total installed capacity by 2045, while coal is phased out over the period

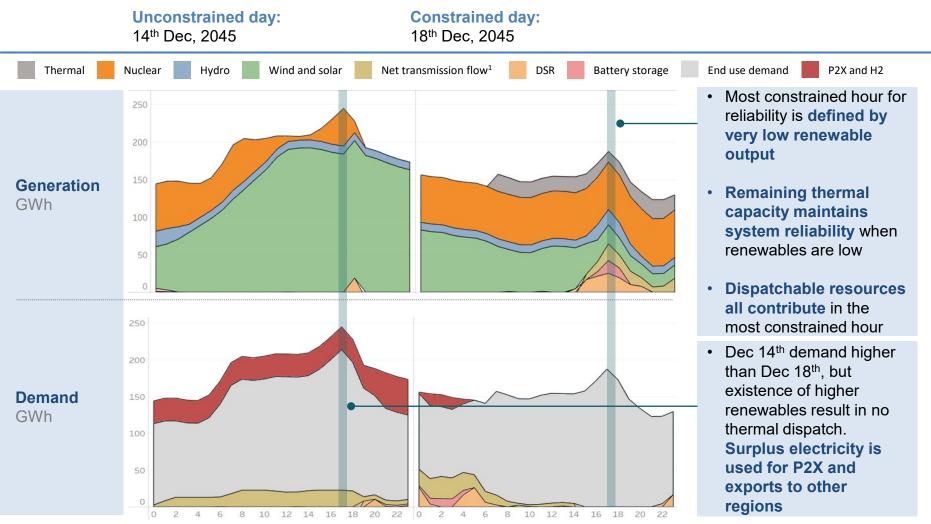
1 Includes also small amounts of geothermal, biomass and biogas 2 National policies on nuclear and coal phase out have been reflected 3 Up to 15% of gas capacity with CCS and other non-renewables SOURCE: 2015 capacity from Enerdata

Transmission between regions enable a low cost energy transition as the benefit of renewables can be shared across Europe

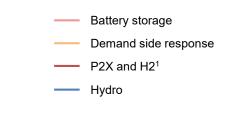

Transmission 57 57 57 capacity 2020 9 11 20 Additions 2020-35 Additions 2035-45 17 12 16 Transmission 86 93 78 capacity 2045 +63% -36% 50° 80% EU economy 90% EU economy 95% EU economy decarbonization decarbonization decarbonization with cost breakthrough

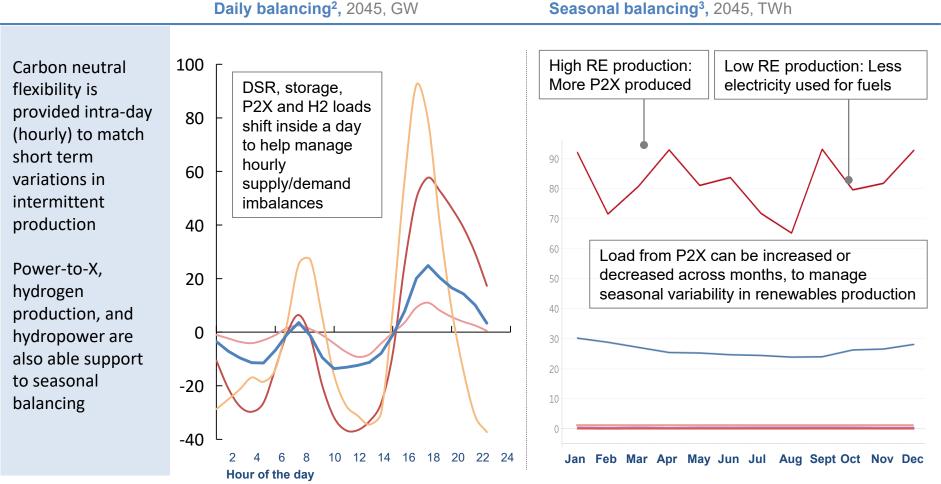
Transmission capacity between regions, GW

A system-wide shift from dispatchable generation to renewables will require new sources of system reliability and flexibility


- A shift from dispatchable generation to renewables require new sources of balancing to respond to variability in renewables production
- Renewables production varies hour to hour and across seasons due to changes in weather conditions. It also varies by region, due to differences in resources available and climate conditions
- Different sources of reliability and flexibility can serve different system needs. For example
 - Hourly demand peaks can be met by hydro, demand-side response and dispatch of battery storage
 - Seasonal supply variations can be bridged by varied production of P2X and H2, nuclear and hydro
 - Regional supply peaks can be met by higher exports through an interregional transmission system
- Sources can also **compete with each other** and will require well designed flexibility markets

System flexibility is provided by several sources of dispatchable resources serving as back-up for days with low renewable generation


1 District heating that is coupled with power sector is not included in this analysis 2 DSR flexibility is provided by hour to hour load shifting in transportation, buildings and heating


Example: The system uses a variety of flexible resources to match supply and demand when renewable production is low

90% EU ECONOMY DECARBONIZATION SCENARIO

Short-term and seasonal system balancing are supported by several competing sources

1 Production of H2 and Power-to-X required for decarbonization outside of the electric sector

2 Difference from system average load / output by type of resource

3 Variation in load shown for P2X/H2; variation in production shown for hydropower

P2X and H2 production is driven by demand from other sectors and would be lower if based solely power sector economics

External demand for P2X and H2 is important but not essential for the system

- To meet 80%, 90% and 95% decarbonization targets we assume demand for P2X and H2 in other sectors. Production of these fuels account for 14 – 19% of total electricity demand and is an important balancing resource for the system
- In a sensitivity check on the 95% scenario where we remove all external demand for P2X and H2 we find significantly lower production of these fuels when only based on power sector economics. Non-availability of these fuels would imply that other decarbonization options would be needed for other sectors to reach 80 – 95% reduction
- A high renewables system would still be viable, but would use other sources of flexibility such as batteries

Key differences in a power system with no external demand for P2X and H2

~10%

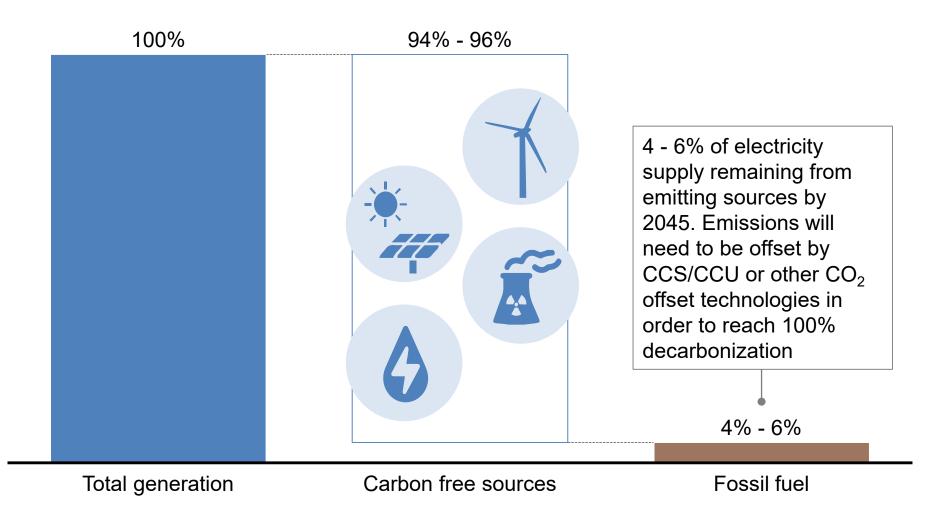
lower electricity demand by 2045 due to lower demand for P2X and H2

~30%

lower offshore wind generation and ~20% lower solar generation due to lower electricity demand

~75% lower P2X and H2 production vs when defined by demand from other sectors

~50% higher battery capacity replacing P2X and H2 for short-duration balancing

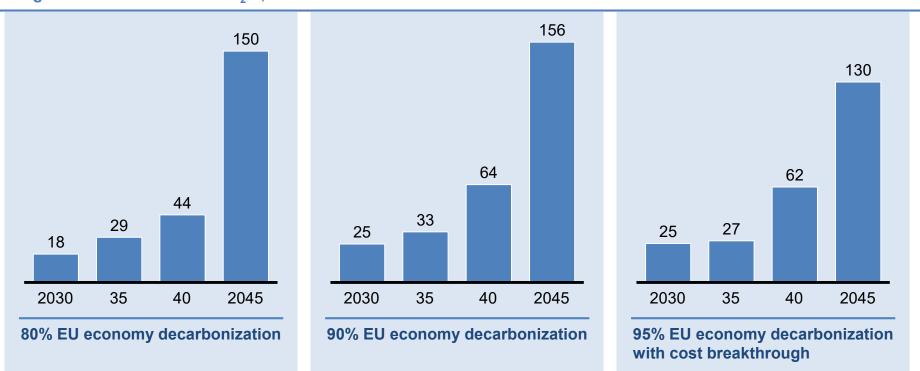

t 120-

of DSR ty in the by 2045

Demand side response can be leveraged for short term balancing and will play a larger role in the future power system

Transport	 Demand from electrified light duty vehicles in aggregate is very flexible. However, flexibility may be reduced by increased ride sharing and automation Medium duty vehicles also have some flexibility, but have higher utilization and less flexibility for day-time charging in particular 	
Buildings	 Space heating/cooling and water heating use a thermal mass inside a building or in a heating network to shift demand either forward or backward in time 	At least 150GW flexibilit system
Industry	 Industry process loads are diverse in their ability to provide demand-side flexibility. Some loads provide almost no room for shifting (e.g., mechanical manufacturing activities), while others are highly flexible (e.g., commodity heating with low temperature sensitivity) 	

By 2045, 95% of emissions are abated through a transition to carbon neutral electricity supply

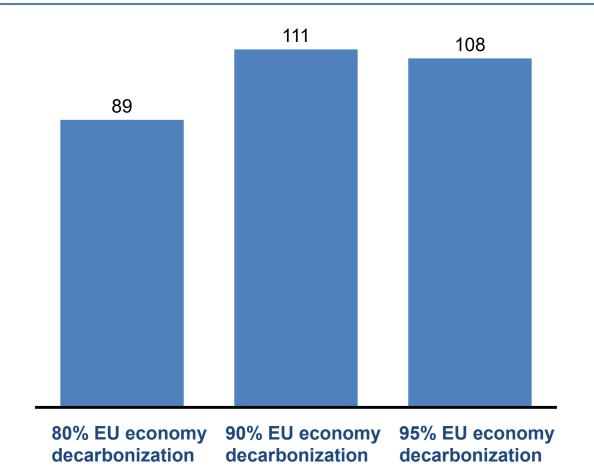

Achieving 100% decarbonization will still require innovation and accelerated maturation of abatement technologies

CCS/CCU	 CCS can be a solution to abate emissions from centralized fossil generation that is operating at sufficient utilization to justify the high upfront costs required for these installations While CCS is still an immature and expensive technology, there are potential synergies in technology development and scale advantages as it is also likely to be needed for other sectors where no other solution is feasible (e.g. abating process emissions in cement production)
Direct air capture ¹	 DAC is still a very immature technology with high variable cost and will likely require further research and development before it is ready for commercial scale deployment Due to lower upfront costs, DAC can be a solution to abate emissions from emitting fossil generation with too low utilization to justify CCS installation
Dedicated H2/green gas	 Hydrogen and green gas produced with clean electricity can be reinjected to the grid, but this process currently involves high efficiency losses. However, the added benefit of providing flexibility to the power system must also be taken into account

In addition, further development of carbon free electricity sources, e.g. tidal and floating offshore wind could provide an alternative solution to decarbonizing the last percentage points of emissions

1 DAC is a technology that processes atmospheric air, removes CO_{2} and purifies it

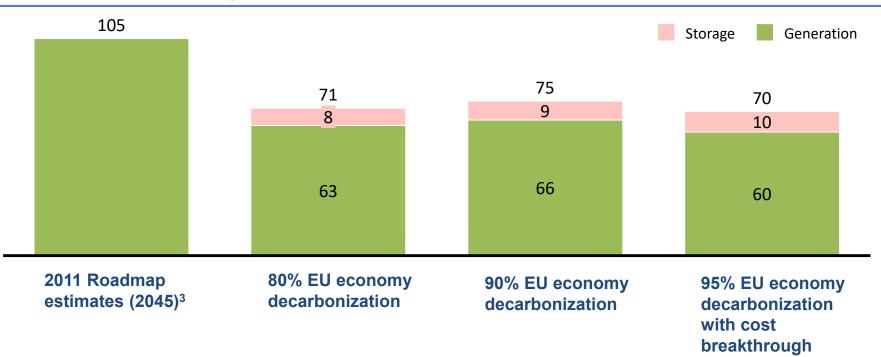
Most emissions can be abated at a cost of 18 – 64 €/ton, but the last tons of emissions are significantly more expensive to abate


Marginal abatement cost of CO₂^{1,2}, EUR/ton

The marginal abatement cost of the *final* ton of CO_2 is difficult to estimate at it is closely tied to the cost of immature technologies, e.g. CCS. Foreseeing future cost trajectories for such technologies in a 2050 perspective is difficult. As a consequence, there is high uncertainty around what marginal abatement cost could actually be in 2045.

¹ CO₂ abatement cost applies to the power sector only and is not representative of the price required to decarbonize other sectors of the economy which is likely to be higher 2 Real cost linked to 2016 price levels

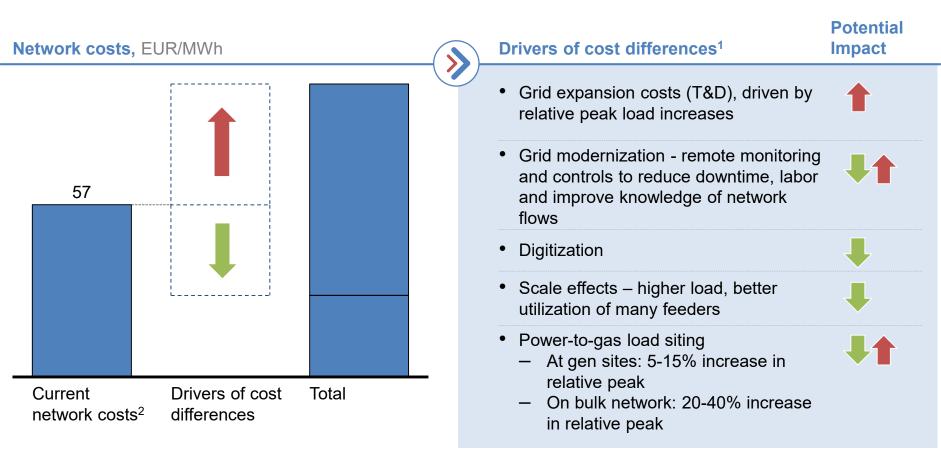
Significant investments will be required to decarbonize the power sector, but will also enable decarbonization of other sectors


Average annual capital investment cost 2020 - 2045¹, EUR bn

- Reaching 80 95% EU economy decarbonization will require a significant ramp-up of investments to accomplish
 - 1) large increase in generating capacity to meet electricity demand growth that is unprecedented in recent times
 - 2) shift of the current generation stack to carbon neutral electricity sources
- These investments will compensate for investments needed to decarbonize other sectors and are not for the power sector alone

Due to cost declines of renewables, decarbonization of the power sector now comes at a reduced cost

Cost of wholesale electric supply, 2045^{1,2}, EUR/MWh


A carbon neutral power supply by 2045 can be accomplished with generation costs of 70 – 75 EUR/MWh. Due to rapid cost declines and more options for flexibility in the system, the overall cost of decarbonization has decreased significantly since previous estimates and the pathway is now achievable

2 Real cost linked to 2016 price level

3 Generation includes Fixed Costs, and Variable and Fuel costs; Tax on fuels and ETS auction payments included for comparison against net zero carbon scenarios

¹ Levelized cost approach approximates in-year revenue required to match cost; includes operating costs (e.g., fuel, variable O&M); additionally, capital expenditures (e.g., wind farms, battery storage, or CCSretrofits) are amortized over the economic lifetime of the asset

Future grid costs will be impacted by different drivers

Implementation details including grid planning processes, regulations, decentralization of generating assets, and security requirements will have a significant impact on network costs under the same generation scenario

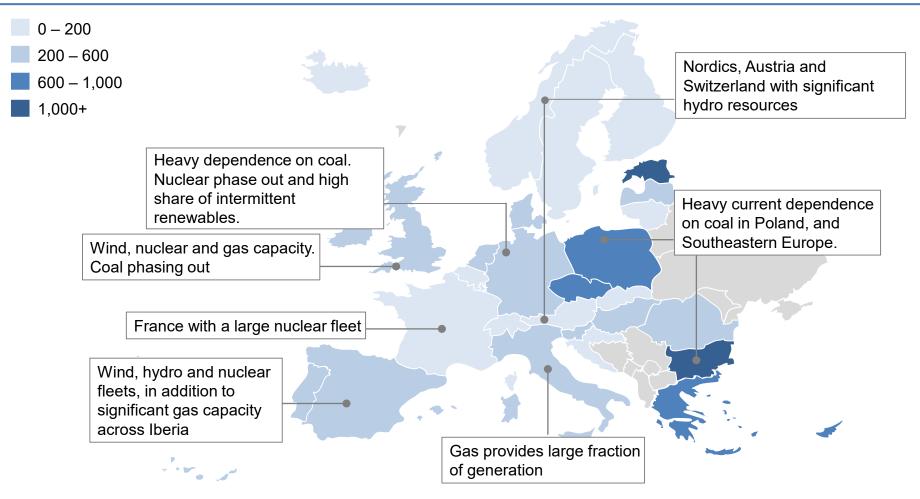
1 Included in DEM as part of generation costs: Offshore wind interconnection, transmission connection of new wind/solar plants, curtailment

Included in DEM explicitly: inter-regional transmission

2 Country-level volume weighted network costs for non-household customers from 2017 Eurostat public data

Key enablers for a low cost carbon neutral power sector

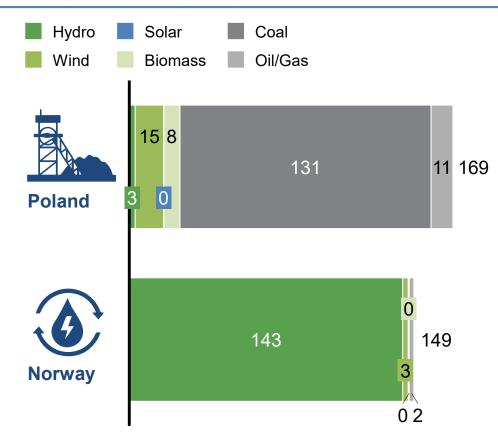
A low cost, carbon neutral power sector must be supported by changing political, technological and market conditions



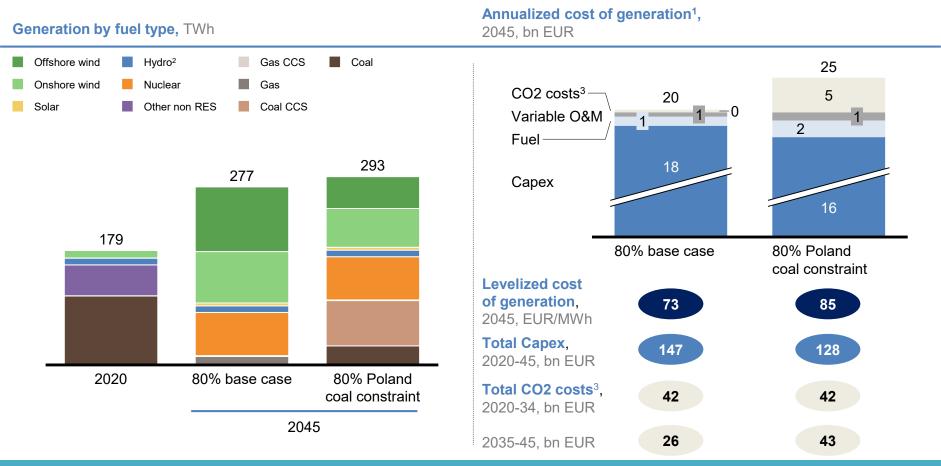
Different starting points

European countries have different starting points in the energy transition

2015 carbon intensity of electricity¹, kg CO₂/MWh


1 Refers to carbon intensity of domestic electricity production, i.e. does not take into account the carbon intensity of electricity mix consumed SOURCE: Eurostat and national statistics

Norway's power sector is already decarbonized while Poland relies on coal for ~80% of its electricity supply


Different starting points

- European countries have very different starting points in the transition towards a carbon neutral power sector
- At one end of the scale, Norway has practically already decarbonized its power sector and has high potential to expand its renewable capacity due to untapped wind potentials and still some hydropower resources
- At the other end of the scale, Poland currently relies on coal for ~80% of its electricity supply and face a more disruptive transition to achieve carbon neutrality
- Countries' starting points imply large differences in cost and the effort and pace of transition required

2017 generation by fuel type, TWh

Poland's intension to keep 40% coal in the electricity mix implies lower renewables build and higher generation cost

Poland is currently discussing a policy to maintain 40% of coal in the energy mix by 2040. We have tested the implication of this policy through a sensitivity analysis that comply with this policy

1 Does not include storage nor transmission & distribution cost

2 Includes also small amounts of geothermal, biomass and biogas

3 Estimated as the marginal cost of abatement multiplied by Poland positive emissions (over the periods); the actual CO2 cost will be highly dependent on the future market design and whether Poland can buy emissions allowances from other countries or if it needs to comply internally ⁸⁶

Appendix

Abbreviations

- CAGR Compound annual growth rate
- CCS Carbon capture and storage
- CCU Carbon capture and utilization
- CHP Cogeneration or combined heat and power
- CO2 Carbon dioxide
- DAC Direct air capture
- DSR Demand side response
- EU European Union
- EU ETS European Union Emissions Trading Scheme
- H2 Hydrogen
- NIMBY Not in my backyard
- O&M Operations and maintenance
- P2X Power-to-X
- RES Renewable energy sources
- Solar PV Solar Photovoltaic
- T&D Transmission and distribution

Units

- kWh kilowatt-hour
- MWh megawatt-hour
- GWh gigawatt-hour
- TWh terawatt-hour
- MtCO2 (1 ton of CO2 x 10⁶)
- GtCO2 (1 ton of CO2 x 10⁹⁾