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1 Introduction 
 
This report has been written in the joint industry project "MonitorX – Optimal utilization of hydropower 
asset lifetime by monitoring technical condition and risk". The report provides a summary of results from the 
project, recommendations for use of results at the industry partners, and suggestions for further work. 
 
MonitorX was led by Energi Norge (Energy Norway – the Norwegian electricity industry association) in 
cooperation with Energiforsk (the Swedish Energy Research Centre). More than 20 Norwegian and Swedish 
power companies participate in the project, as well as a number of equipment manufacturers and service 
providers. Furthermore, the research institutions SINTEF Energy Research (Trondheim, Norway), Comillas 
Pontifical University (Madrid, Spain), and the Norwegian University of Science and Technology, NTNU 
(Trondheim) participated. MonitorX started in July 2015 and lasted until June 2019. The project was 
financially supported by the Research Council of Norway, grant no. 245317, and the industry partners. 
 
All MonitorX project partners are listed below: 
 
Project leader 
Energy Norway (EN) 
 
R&D partners 
SINTEF Energy Research 
Norwegian University of Science and Technology 
(NTNU) 
Comillas Pontifical University 
 
Norwegian hydropower companies 
BKK Produksjon AS 
E-CO Energi AS 
Hafslund Produksjon AS (until merger with E-CO) 
Gitre Energi Produksjon AS (before: EB 
Kraftproduksjon) 
Eidsiva Vannkraft AS 
Hydro Energi AS 
Lyse Produksjon AS 
NTE Energi AS 
Sira-Kvina Kraftselskap AS 
Skagerak Energi AS 
Statkraft Energi AS 
TrønderEnergi Kraft AS 
Østfold Energi AS 
 

Swedish power companies represented 
by Energiforsk 
Vattenfall Vattenkraft AB 
Umeå Energi AB 
Vattenfall Indalsälven AB 
Fortum Generation AB 
Uniper - Sydkraft Hydropower AB  
(before: E.ON Vattenkraft Sverige AB) 
Sollefteåforsens AB 
Statkraft Sverige AB 
Skellefteå Kraft AB 
Holmen Energi AB 
Jönköping Energi AB 
AB Edsbyns Elverk 
Varberg Energi AB 
Karlstads Energi AB 
Jämtkraft AB 
 
OEMs and service providers 
Voith Hydro AS 
Karsten Moholt AS 
Andritz Hydro AS 
Hymatek Controls AS 
 
Financing 
The Research Council of Norway 
(+ industry partners) 
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The goal of MonitorX was to develop models and algorithms for data analysis, condition monitoring and 
predictive maintenance of components in hydropower plants. The work in MonitorX was case-driven, 
meaning that identification of practical use cases and development of these cases with the industry partners 
was the main approach that has been used to reach the goal. See chapter 2 for a more detailed overview of 
the MonitorX project. 
 
The expected benefit of using models and algorithms as developed in the MonitorX project and 
implementing advance condition monitoring and intelligent data analysis in hydropower plants are:  

• Better knowledge about the real technical condition of the components, and the relation between 
operation conditions, loads, degradation and lifetime. 

• Fewer manual inspections and shorter maintenance downtime by using more condition-based and 
less time-based maintenance. 

• Reduced cost for corrective maintenance due to early warnings of failures, and thus reduced 
probability of failure. 

Furthermore, the project contributed to knowledge building and exchange of experience within the field of 
data collection and data analysis, as well as implementation and use of condition monitoring and predictive 
maintenance in hydropower plants. In Chapter 6, these benefits are discussed in more detail and illustrated 
by several examples. 
 

1.1 Structure of report and corresponding result documentation 
 
This report is the final and main report of the MonitorX project. The report provides a project summary and 
overview and is organised as follows: Chapter 2 gives a brief description of the project. The results from a 
survey on status of condition monitoring, data collection and data analysis in Norwegian and Swedish 
hydropower plants is presented in Chapter 3. Chapter 4 introduces and briefly describes the cases that have 
been developed in the project. Chapter 5 provides an overview of the project results and deliverables. 
Potential benefits of using the project results are briefly discussed in Chapter 6. In Chapter 7, 
recommendations for use of the results at the industry partners are given. Conclusions and recommendations 
for further work can be found in Chapter 8. Appendix A provides an overview of the documentation, codes 
and data sets for the MonitorX cases. More detailed case descriptions and results for the cases can be found 
in appendices B – H. 
 
In addition to providing an overview of the project and its results, the main report is intended to guide the 
reader to the documentation of the MonitorX cases, including example code that has been developed for 
many cases. The basic structure of the MonitorX documentation is illustrated in Figure 1-1. After getting the 
general overview of the project and the cases in the main report, the reader is recommended to proceed to the 
case summaries in the appendices of the report, where more technical details for each case can be found. For 
further reading, the reader is then referred to the additional documentation that is available for most of the 
cases. Appendix A provides an overview of the additional case documentation. 
 
The main report and the case summaries can be downloaded from the web page 
www.energinorge.no/monitorx. On this page, there will also be a link to the MonitorX Results Sharepoint, 
where all additional documentation and codes can be found. The Sharepoint area has restricted access. 
Representatives from all the companies that participated in the project have access. 
 
 

http://www.energinorge.no/monitorx
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Figure 1-1: Relation between main report and case documentation. L4-L12 are deliverables as 
specified in the project proposal to the Research Council of Norway submitted in autumn 2014. 

 
The additional documentation is structured as follows: For each case where such documentation is available, 
a folder exists in the Sharepoint area containing reports, papers, memos, student thesis and example code. 
The folder name is <<Case no. – Case name>>. 
 
Each case folder contains the case descriptions, as attached to this report, and three additional folders named 
"Code", "Data" and "Docs", see Figure 1-2. The content of these folders is: 

• Code 
o This folder contains the example code for the models and algorithms developed and tested in 

the project; if code is available for the case. 
o For some cases, different models and algorithms have been developed, either with the same 

data, or with different data sets. The different code variants are numbered Kx.1, Kx.2, Kx.3, 
etc., where x is the case number. Note that some codes are general and can be applied to 
different cases, which means that there are cross references from one case to the code and 
code documentation from a different case. 

• Data 
o This folder contains example data files; if data is available for the case. Note that some data 

files contain only a small extract of the data that have been used for code development and 
testing. The reason for this is anonymisation and that the data should not uncover production 
strategies or other sensitive information. Ten data samples are usually provided for the cases 
where not the full data set is given.  

• Docs 
o This folder contains all additional documentation. 
o The additional documentation is numbered Dx.1, Dx.2, Dx.3, etc., where x is the case 

number. Note that some documentation is valid and useful for several cases, which means 
that there are references from one case to documentation from a different case. 
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Figure 1-2: Additional documentation and code: folder and file structure. 

 

1.2 Requirements for implementation and use of MonitorX results 
 
Implementation and use of the MonitorX results require programming knowledge, preferably in the 
programming languages Python and/or MATLAB. Knowledge about machine learning, and especially 
artificial neural networks (ANN), is an advantage. Implementation and use of the MonitorX results are 
further discussed in Chapter 6. 
 
Other requirements are access to historical data (long enough time series with historical data) and availability 
of data that has sufficient quality (e.g. high enough resolution)1. Systems/platforms for data collection and 
extraction play an important role to make the data easily accessible.  

 
1 See chapter 7 and MonitorX case descriptions for discussion about requirements regarding data history and resolution. 
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2 MonitorX project description 
 
The aim of the MonitorX project was to develop models, algorithms and corresponding software prototypes 
for optimal lifetime utilization of hydropower components based on monitoring of technical condition and 
risk. Here, optimal lifetime utilization means to perform maintenance and component replacements when 
required, i.e. not too late, but not too early either. To reach the aim of optimal lifetime utilization, methods, 
models and algorithms for condition monitoring and early warning of faults are necessary. 
 
The project focus on data analysis models and algorithms was chosen because one of the starting points of 
the project was the assumption that sensor and measurement data are not much used for planning and 
optimization of maintenance and refurbishment. Thus, a project with focus on model and algorithm 
development will be useful to motivate plant operators to accelerate and implement solutions for (online) 
data collection and analysis. 
 
MonitorX mainly focuses on models based on machine learning and artificial intelligence. The models have 
been developed in a number of cases, where each case focuses on a specific type of hydropower component. 
Data from selected hydropower plants were used to develop the models. The models were tested with data 
from one or several power plants. 
 
The MonitorX project started with an initial phase where the status for collection of monitoring data and use 
of monitoring data in the power companies were analysed and where a list with relevant use cases were 
developed together with the industry partners. Furthermore, an introduction to methods and models for data 
analysis was performed. Results from the status analysis (MonitorX deliverable L1) and the introduction to 
methods (deliverable L2) can be found in separate reports [1, 2]. A sketch of the timeline for MonitorX 
including deliverables (L) and the developed cases is shown in Figure 2-1. A case overview is given in the 
next chapter. 
 
Note that MonitorX did not focus on development of systems and platforms for data handling and analysis, 
such as solutions for data collection and storage. A number of different systems and platforms are available 
on the market, and it is assumed that these solutions serve most of the current needs, even though further 
developments may be required, e.g. within system security and interoperability (both towards data sources 
and towards systems and software for data analysis). One of the aspects that the MonitorX project discussed 
and illustrated through the cases, however, is requirements regarding data resolution (sampling frequency) 
and data quality. 
 



 

PROJECT NO. 
502001174 

REPORT NO. 
2019:00796 
 
 

VERSION 
1.0 
 
 

10 of 47 

 

 
Figure 2-1: Sketch of MonitorX project timeline including deliverables (L1-12) as specified in 2014  

in the Research Council project proposal. L12 is the present report. 

 

2.1 Relation between cases and work packages 
 
The work package (WP) structure of the MonitorX project is shown in Table 2-1, as presented in the project 
proposal to the Research Council of Norway submitted in autumn 2014.  
 
Table 2-1: MonitorX work package (WP) structure. 

WP no. WP title and aim 
1 Condition monitoring data and models for data analysis 

Aim: To identify and develop models for condition monitoring data analysis 
2 Models for monitoring of lifetime and risk 

Aim: To develop models for estimation and monitoring of remaining lifetime and risk 
(economy, safety, environment) 

3 Prototype development 
Aim: To develop a MonitorX software prototype (based on the models developed in WP1 and 
WP2) 

4 Prototype testing 
Aim: Test of prototype in hydropower stations of participating companies 

5 Postdoc-project 
Aim: Educate Postdoc (3 years) on advanced condition monitoring methods, diagnosis and 
prognosis of condition and lifetime 

6 Project administration 
Aim: Administration of project, coordination between partners and steering committee 

7 Dissemination 
Aim: Publishing of results to the public via internet, conferences and journals, and to the users 
via project web/hotel, workshops and courses. 
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Since much of the project work was part of the cases developed in the MonitorX project, the original WP 
structure must be related to the case-based research approach. This relation is illustrated in Figure 2-2. Each 
case should be related to the WPs 1, 3 and 4, where the aims were to develop models for data analyses, develop 
prototypes (code) and conduct tests with data from selected power stations. Some of the cases were assisted 
by the postdoc work. Furthermore, some of the cases investigated aspects that were addressed in WP2, where 
remaining lifetime and risk monitoring was the topic. 
 

 
Figure 2-2: Work packages vs. cases (case numbering is arbitrary). 

 
The research topics of WP1 and WP2 were also addressed in three separate MonitorX reports (the numbers 
L1, L2 and L8 refer to the deliverable numbering in the project proposal to the Research Council of Norway): 
 

• WP1 - Condition monitoring data and models for data analysis: 
o L1: Current status of condition monitoring in Norwegian and Swedish hydropower plants [1] 

• WP2 - Models for monitoring of lifetime and risk 
o L2: Review of analytics methods supporting anomaly detection and condition based 

maintenance [2] 
o L8: Lifetime and maintenance modelling utilizing monitoring data [3] 
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3 Survey of status regarding condition monitoring 
 
One of the first activities in the beginning of the MonitorX project (i.e. autumn 2015) was an analysis of the 
general status for collection of monitoring data and use of monitoring data in the power companies that 
participate in the project. In addition to interviews with selected project participants, a survey was conducted. 
Six power companies replied to the survey and some of the results are presented in this section. The survey 
was repeated at the end of the project (June 2019) to identify areas of progress and changes, as well as topics 
for further research. 
 
The surveys covered questions related to the following main topics: 

1. Measurements and sensors 
2. Data storage 
3. Systems for data collection and IT infrastructure 
4. Data access 
5. Data analysis 
6. Use of data in decision making process (maintenance and reinvestment) 
7. Benefits and cost-benefit evaluation of condition monitoring 
8. Competence and requirements 

 

3.1 Survey results 2015 
 
The survey was conducted as a set of statements to which the companies could express their agreement or 
disagreement on a scale from 0 (disagree) to 10 (fully agree). The questionnaire included also some yes/no-
questions. The results for these questions are shown together with the 2019 results in section 3.3. Figure 3-1 
shows results for the agree/disagree-questions from the 2015 analysis. The blue bar is the average of the 
answers and the green error bars (± 1 standard deviation) illustrate the variation of the answers. 
 
The companies neither agreed nor disagreed completely with most of the statements. This can be because 
there are already some solutions for data collection, analysis and condition monitoring in use, but there is 
need for improvement. For example, most of the companies had access to some monitoring data, mostly via 
SCADA or via special measurement systems and sensors. The access via the SCADA system led usually to 
some restrictions regarding ease of data access, available history and data resolution. For example, manual 
data download and transfer to a data analysis system/programme is often required. Furthermore, many 
SCADA systems overwrite high resolution data after some time due to restricted storage capacity. Before 
overwriting, the data is compressed, for example by calculating a 1 hr average value, resulting in low data 
resolution for historical data. The survey clearly confirmed the initial hypothesis for the MonitorX project 
that the available data is hardly used for making decisions on reinvestment (i.e. refurbishment and 
replacement) and maintenance, even though some of the larger companies already started to visualize and 
analyse data and to use different types of models for data analysis. 
 
An interesting observation from the 2015 survey was that the companies partly agreed with the statement 
that the benefit of condition monitoring systems is well-known to them, whereas they do not have an 
estimate of this benefit. This indicates a challenge and need for further work within cost-benefit estimation of 
condition monitoring. The numerical examples presented in Chapter 6 are an attempt to address this problem. 
It is important to mention that the willingness to invest in monitoring solutions depends on the ability to 
prove the benefit and return of investment for such solutions. It can also be pointed out that several 
companies indicated in 2014/2015 that the authorities have high requirements, e.g. regarding data security. 
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Figure 3-1: Results from survey in the beginning of the MonitorX project (autumn 2015). 'A' in the 

question numbers 'A.B' refers to the main topic, as shown in the list in the introduction to this section. 

 
In 2014/2015, most hydropower companies did not have better access to monitoring and SCADA data than 
the access that the monitoring equipment and the SCADA system itself offers. This means that specific IT 
infrastructure or systems for data collection, permanent data storage and data access were not much in use. 
This also means that monitoring data for analysis had to be directly extracted from the SCADA system or 
from the monitoring equipment, which sometimes required some manual work, such as travelling to the plant 
to copy the data to an external storage device. 
 

3.2 Developments 2015-2019 
 
In recent years, several of the plant operators that participate in the MonitorX project started to systematically 
collect monitoring data from their hydropower plants by using a central data collection and storage solution 
(i.e. a software system or digital platform, called big data platform in the following). The overall aim is to 
establish better access to the data that is already available in various other systems (SCADA, measurement 
equipment, sensors, etc.) to make the data available for analyses. 
 
To be able to develop, test and implement data analysis models, an integration of data analysis, presentation 
and visualization of analysis results, and data collection/storage is desired. The automatization of the data 
stream from sources via storage and analysis to result presentation requires also integration. Thus, the big 
data platform and the solutions for data analysis and visualization must be integrated. Several plant operators 
have started to use big data platforms that include solutions for data analysis and result presentation and 
visualization. Where the analysis is not directly conducted in the big data platform, models or software code 
developed in data analysis software, such as MATLAB, Python and R, can be called or run from the big data 
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platform. Result presentation and visualization includes hand-hold devices, such as tablets and smart phones, 
and fault alarms automatically sent by email or SMS. 
 

3.3 Survey results 2019 
 
The results from the 2019 survey are shown in the three diagrams below. 'A' in the question numbers 'A.B' 
refers to the main topic, as shown in the list in the introduction to this chapter. The results in Figure 3-2 are 
for the questions (statements) where the answers are given as a degree of agreement/disagreement. Figure 
3-3 shows the results for questions that should be answered with 'yes' or 'no'. In both figures, the 2019 results 
are presented together with the 2015 results. In Figure 3-4, a direct comparison with the 2015 results is not 
possible, because the figure shows a list of challenges mentioned in the 2015 survey, and where the task in 
2019 was to express the degree of agreement/disagreement with these challenges, i.e. to assess to what 
degree these challenges are still valid and exist. 
 
The survey was anonymous, and it is not possible to identify answers from specific companies. Even though 
MonitorX consists in 2019 of the same partners as in 2015 (apart from four partners that joint later in the 
project period), different companies and persons may have responded the survey in 2015 and 2019. This 
makes the interpretation of the survey results and challenges observed quite difficult. The observed changes 
can be caused by different respondents that answered the questions in the survey, but the differences may be 
also explained by contributions from the MonitorX projects, or general trends and changes. Some of the 
trends and changes that can be observed are discussed in section 3.4. Note that the observed changes are 
statistically not significant. Nevertheless, they can be an indicator of developments and trends. 
 

 
Figure 3-2: Results from survey at the end of the MonitorX project (June 2019), compared  

with the 2015 results.  
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Figure 3-3: Results for the yes-no-questions, given as percentage of 'yes'-answers. 

 
 

 
Figure 3-4: Results for the evaluation in 2019 of challenges identified in 2015. 
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3.4 Changes since 2019 
 
For some of the answers, one rather expected a positive development than a negative development, because 
the impression during the project period was that most of the project participants, and the industry in general, 
focuses in recent years much on the topic of digitalization, data collection and preventive maintenance. 
Furthermore, some of the companies started to use systems for data collection and data analysis. 
Nevertheless, the results look like a negative development, for example (see Figure 3-2), for statements 1.1 
and 1.3 (measurements and sensors), 4.1 and 4.2 (data access) and 6.2 (use of data in decision making 
process). This may be an effect of that different partners answered the 2015 and 2019 survey. However, this 
may also be an effect of more competence and awareness about what a good status is within the mentioned 
topics. For example, an instrumentation with sensors and measurement equipment that 2015 was considered 
as good, may not be considered as good today, because new technologies and possibilities appeared since 
2015. When no big changes of instrumentation were made, i.e. the status regarding sensors and 
instrumentation is in 2019 the same as in 2015, the relative status has worsened compared to a changing and 
developing "reference" (i.e. the state-of-the-art within the field, which is continuously developing). 
 
The field "data storage" shows some positive developments regarding resolution and storage capacity (2.1 
and 2.2), which means that the data quality has improved since 2015, even though 2.3 indicates a slightly 
negative trend. It looks like that the knowledge regarding benefit of condition monitoring is improved (7.1 
and 7.2), even though the answer for 7.3 (see Figure 3-3) indicates that benefit analysis is not conducted 
systematically before investments. 
 
There is some positive development regarding competence on condition monitoring and condition 
monitoring systems (8.1), but requirements from authorities (such as data security) are still considered to be 
high (8.3). 
 
From Figure 3-3, where most of the results indicate a negative development, one gets the impression that the 
hydropower industry developed in direction of less digitalization. Especially 4.3 shows a surprising change. 
The explanation of these results is difficult. 
 
5.3 shows – in contrast to 5.1 and 5.2 – a positive development that indicates more use of advanced types of 
data analysis. However, it seems strange that this at the same time means that visualization (5.1) and simple 
analysis methods (5.2) are less used than before.  
 
Many of the challenges indicated in 2015 are to some degree, or for some companies, still challenges in 2019 
(see Figure 3-4). However, acceptance for condition-based maintenance and support from the corporate 
management seems to be large. Challenges regarding communication with the power plant (absence of 
powerful networks/connections, such as fibre, for transfer of large amount of data), a problem that was 
mentioned in the beginning of the MonitorX project, is less critical in 2019. 
 
Conclusions 
The results show that digitalization, condition monitoring, use of condition monitoring data and predictive 
maintenance are fields that require more development and implementation work. Some companies have just 
started to use new technologies, systems and solutions, but they are mostly in an early development and 
testing phase, and full implementation and utilization is still several steps ahead.  
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4 Overview of MonitorX cases 
 
An overview of the MonitorX cases is shown in Table 4-1. Since the project focus was on models and 
algorithm for data analysis, most cases include model and algorithm development and testing. However, 
since data access is a key requirement for all cases, one of the cases (C8) focused on collection of data from 
the hydropower plant's local control system. The hydropower equipment manufacturer Voith developed a 
new solution for data access to supply the project with a data set of high quality. All other cases aim to detect 
faults or degradation of hydropower components through monitoring of carefully selected parameters, and 
then analysis of these parameters with respect to the normal behaviour of the component (i.e. detecting 
deviations from normal behaviour, where deviations may indicate a problem or fault). 
 
Table 4-1: Overview of MonitorX cases. 

No Title Aim R&D partners Industry 
partners 

Power stations 

C1 Rotor fault detection Develop new methods for online fault 
detection of generator rotor faults 

NTNU Vattenfall, 
Eidsiva, Statkraft 

Kalvedalen 
(Eidsiva) 

C2 Condition monitoring 
of drainage pumps  

Detect faults and degraded condition for 
drainage pumps in hydropower plants using 
SCADA data 

NTNU, 
SINTEF 

Vattenfall, 
TrønderEnergi, 
Voith 

Brattset 
(TrønderEnergi) 

C3 Audio surveillance Anomaly and fault detection in power station 
by monitoring sound/noise in the hydropower 
station 

- Andritz, Statkraft 
 

Svorka 
(Statkraft) 

C4 Condition monitoring 
of rotating equipment 
using vibration data 

Anomaly and fault detection in power station 
by monitoring vibration from the hydropower 
unit 

NTNU Statkraft - 

C5 Condition monitoring 
of generator bearings 

Develop algorithms for early detection of 
bearing faults using SCADA data 

Comillas, 
SINTEF 
NTNU 

BKK 
 

Dale, Nygard 

C6 Condition monitoring 
of Kaplan turbine 
hydraulic system  

Develop algorithms for monitoring of 
condition for Kaplan turbine regulating 
mechanism and hydraulic system using 
SCADA data. 
Develop algorithms for detection of oil 
leakages using SCADA data 

Comillas, 
SINTEF, 
NTNU 

Glitre, 
Vattenfall, 
Skellefteå 
 

Embretsfoss 4 
(Glitre), Laxede 
(Vattenfall) 

C7 Fault detection for 
power transformers 

Detect transformer faults through monitoring 
of temperature behaviour 

SINTEF Skagerak Uvdal 
(Skagerak) 

C8 SCADA data 
collection system 

Establish good and continuous access to 
SCADA data 

- TrønderEnergi, 
Voith 

Brattset 
(TrønderEnergi) 

C9 Continuous 
servomotor 
monitoring 

Detecting changes in servomotor forces - Hymatek - 

 
A summary for all cases is presented in Section 4.2. Further details can be found in the Appendices and the 
additional documentation. The cases C1 and C3 are conducted in collaboration with the Norwegian Research 
Centre for Hydropower Technology (HydroCen) [4]. Case C7 included a collaboration with the SAMBA 
project [5]  
 
The list of cases is based on the results from a workshop that was organized by the MonitorX project in April 
2016 in Oslo. The list of selected cases was originally longer, but some of the cases were not further 
developed for different reasons. Cases that were identified, but were not chosen to be developed are (title and 
aim): 
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• Monitoring of turbine efficiency 
o Develop intelligent algorithm for turbine efficiency monitoring 

• Rotor windings short circuit detection 
o Use measurements from excitation system (+ possibly vibration measurements) to determine 

the state of the rotor windings in hydropower plants 
o This case is closely related to case C1, but the focus should be on measurements available 

from the excitation system. 
 
The results from the Oslo workshop include additional ideas for cases. The ideas can be found in the minutes 
of meeting from the workshop and might be a basis for further activities after the MonitorX project. 
 
In addition to the cases shown in Table 4-1, a case (X1)) on integration of normal behaviour models (such as 
the models used in cases C6 and C7) in the commercial software tool OSIsoft PI [6] has been conducted. The 
reason for the integration in OSIsoft PI was that several MonitorX participants started to use OSIsoft PI for 
collection, storing, presentation and analysis of data. 
 

4.1 Types of models 
 
Different types of models and algorithms have been used in the MonitorX cases. This is illustrated in Figure 
4-1, in which all cases have been categorized in terms of the basis and physical understanding (physics-based 
– data-driven) and complexity (simple – advanced). The cases in the upper half of the complexity scale (e.g. 
frequency analysis, machine learning) typically requires specialized competence. Note that for some cases, 
several models have been tested. See references [5] and [7] for further discussions about types of models, 
their properties, and their advantages and disadvantages. 
 
 

 
Figure 4-1: Illustration of the different models used in the MonitorX cases  

(C1, C2, etc. refer to the MonitorX cases as shown in Table 4-1). 

 
The machine learning models applied in MonitorX are designed as normal behaviour models. Normal 
behaviour models are models that learn the relations and patterns that are typical for operation of the 
equipment that does not have a fault or other problems. Then, the normal behaviour model can be used for 
anomaly detection, i.e. the normal behaviour described by the model is compared with the real behaviour, 
and when the real behaviour deviates from the learned normal behaviour, a warning can be given, because 
this indicates that an abnormal situation is detected. The reason for using this approach is that hydropower 
components are often unique designs, there are few of them, and they have a high reliability and long 
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lifetime. Therefore, there are few faults, Thus, learning from historical faults is usually not feasible. See 
MonitorX report L2 [2] for an introduction to and a review of analytics methods supporting anomaly 
detection and condition based maintenance. 
 
The normal behaviour approach, as for example used for the neural network models in MonitorX cases C5 
and C6, is illustrated in Figure 4-2. In many cases, we can identify or assume a correlation between some 
measured input variables 𝑿𝑿 and one or several measured output variables 𝒀𝒀. The relation between 𝑿𝑿 and 𝒀𝒀 is 
given by the real physical processes in a hydropower plant. A bearing temperature, for example, will depend 
on how the power plant is operated (actual output, head, etc.), ambient temperature, cooling (cooling water 
temperature, cooling system status (on/off), …), etc. For a bearing, one could then build a process model 
(e.g. with artificial neural networks) that represents the relation between bearing temperature (𝒀𝒀) and head, 
ambient temperature, cooling, … (𝑿𝑿). The model could then be used to calculate an estimate of the bearing 
temperature, denoted 𝒀𝒀�, and compare the estimate with the measured (real) bearing temperature (𝒀𝒀). The 
difference between estimated and real temperature (𝒀𝒀�- 𝒀𝒀) can then be used an anomaly indicator. 
 
 

 
Figure 4-2: Anomaly detection with normal behaviour models (based on a figure by Prof. M.A. Sanz-

Bobi, Comillas University [2]) 

 

4.2 Case descriptions 
 
In the following, brief descriptions of the cases are provided, including one or two figures to illustrate the 
main idea, model and/or results. For the interested reader, more technical details and results are provided in 
appendices and the additional case documentation. 
 

Case C1 – Rotor fault detection 

The aim of this case was to propose methods for on-line detection of rotor short-circuit faults and other faults 
in hydro generators. This case was carried out in close collaboration with HydroCen, and the work was 
carried out by NTNU postdoc Mostafa Valavi and master student Kari Gjerde Jørstad [8], [9] in close 
collaboration with the hydropower plant operators and MonitorX industry partners Eidsiva, Vattenfall and 
Statkraft. In the first stage of their work, an idea was evaluated to use available SCADA data for fault 
detection. However, simulation of the generator in healthy and faulty state by FEM (finite element method, 
electromagnetic field simulation) showed that this idea is not feasible. Thus, a new fault detection method 
was proposed, and its feasibility was evaluated in the second stage of the work. 
 
The new method uses spectral analysis of stator voltage and current for fault detection. The results of the 
spectral analysis are illustrated for two examples in Figure 4-3, where the frequency spectrum of both a 
generator with healthy rotor winding and a rotor winding with faults are shown. In a case of an inter-turn 
short-circuit, in addition to the amplitudes at 50 Hz and its odd multiples, sideband harmonics appear at each 
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side of the main harmonics. These sideband harmonics could be used as indicator for fault detection. The 
method requires a much higher data resolution (voltage or current) than usually available through the 
SCADA-system, and a sampling frequency of at least 500 Hz is recommended. However, the data collection 
must not necessarily be continuous, but samples of at least 2 seconds could be collected regularly, e.g. once 
in a day or week. 
 

 
Figure 4-3: Frequency spectrum of induced voltage at no-load, healthy vs. 1 turn short-circuited (left), 

and frequency spectrum of stator current at full-load, healthy vs. 20 turns short-circuited (right). 
Courtesy of K. G. Jørstad [8]. PSD: power spectral density. 

The detection of rotor inter-turn short-circuits was primarily investigated, but also detection of other types of 
faults, including eccentricity and bearing faults, were studied. A detailed description of the work and the 
results can be found in Appendix B and in references [8] and [9]. 
 

Case C2 – Condition monitoring of drainage pumps 

The aim of this case was to develop and test models for monitoring the performance and condition of 
drainage pumps in hydropower plants. Even though drainage pumps usually are not considered as the most 
critical equipment of hydropower plants, they play an important role for protecting the power station from 
flooding. The drainage system is designed as a redundant system with two or several pumps in parallel, and 
an ejector as the last barrier if all pumps fail. If one of the pumps has failed, it must be quickly replaced to 
maintain the high reliability of the redundant system, since the reliability of a redundant (i.e. parallel) system 
drops significantly if one of the components fail.  
 
The drainage system is usually not specifically equipped with sensors and monitoring systems. The 
information that often is available is the on and off signal for the pumps and/or the water level of the 
drainage pit. Some other signals, such as the motor current, may be available in some cases. The on and off 
cycles of the pump result in a quite regular pattern (see the left part of Figure 4-4) given that the pump and 
the surrounding systems work faultless. The pump pattern will change when the inflow changes (e.g. due to 
changed operating conditions of the plant, seasonal effects, or increased leakage water inflow to the drainage 
pit from faulty surrounding equipment) or when the capacity of the pump changes (e.g. due to pump 
degradation) [10]. Thus, the analysis of the pump cycles and the inflow pattern can indicate problems with 
the surrounding equipment, and the analysis of the pump capacity can indicate problems with the drainage 
pumps and drainage system. 
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Figure 4-4: Raw data, i.e. drainage sump water level (left), and pump capacity (right).  
Courtesy of K. Prajapati [11]. 

In a master student project carried out by NTNU master student Kishan Prajapati [11], a model for 
estimating the pump capacity was developed. This model considers the inflow and outflow of the drainage 
pit as a function of different operating conditions. Thus, it can – in addition to detecting changes in the pump 
capacity – also be used for detecting abnormal changes of the inflow. The model was developed and tested 
with data from Brattset power plant (2 x 40 MW, Francis, head: 273 m) were two drainage pumps are 
installed. The two pumps are used alternately. The estimated pump capacity is shown in the right part of 
Figure 4-4, where both the estimates for pump 1 (red) and pump 2 (blue) are illustrated. See also Appendix C 
for further details. 
 
Changes of the pump capacity can be seen at the points in time indicated in the diagram (1 September and 6 
December). The pump capacity dropped significantly, by 5 to 7 %. The reason for this is not clarified, but 
maintenance carried out at the plant is a likely cause. Nevertheless, the example indicates that the approach 
may be used for detecting pump capacity changes, whether caused by maintenance, degradation of the 
pumps or other factors. 
 

Case C3 – Audio surveillance 

The aim of this case study is to use airborne sound monitoring to detect various failures. This idea partly can 
be considered to mimic operators’ knowledge accumulation via auditive stimuli. In a hydro power plant, the 
standard instrumentation consists in dedicated sensors to monitor specific components such as 
accelerometers and proximity probes for shaft line vibration or pressure probes to monitor flow conditions. 
In contrast to these examples, sound monitoring offers the possibility to gather information from a large 
number of components with a single sensor (microphone) or a sensor array. This enables the recording of the 
sound patterns (signatures) emitted by the regarded components. The patterns may be associated with 
different conditions of the components. Then, the evolution of these patterns can be analyzed, thus providing 
characteristic features of various sound developments. This kind of monitoring is investigated as it offers 
various advantages in comparison to other methods: the simplicity of the installation and operation is a cost-
effective solution, anomalies of several machines may be regarded accumulative and there is no need of 
cabling sensors directly on the machine. Additionally, an early on recognition of approaching issues shall be 
enabled. 
 
In order to prove the concept, measurements were taken by Andritz at Statkraft's Svorka power plant during 
the first months of 2019. At the power plant, studio microphones with a sampling frequency of 44,1 kHz and 
ultrasonic microphones with a sampling frequency of 200 kHz were used. Recording covered short sound 
samples at regular intervals. The samples were collected by edge devices which can handle 1-4 sensors each 
and sent to a central server on the server’s request. Processing and analysis were performed in Graz with 
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dedicated HPC servers. The results of the analysis were then made accessible via the Andritz digitalization 
platform METRIS, which enables the management, control and investigation of data and processes. 
 
The initial objective was to detect specific events according to their sound signatures: 

• Stone impact 
• Cavitation  
• Early detection of bearing failure 

 
To distinguish the sound signatures of various events, advanced machine learning technics are necessary. 
First, audio signals are converted from time domain signals to spectrogram representations. Spectrograms are 
a widely used approach to compress audio data and to identify and compare respective features. In a second 
step, the number of dimensions describing the features of each sound sample is reduced using a neuronal 
network. Eventually, in this reduced space, the distance between the different samples is evaluated to 
quantify the anomaly score of each sample. Furthermore, a clustering algorithm is applied to group samples 
with similar features allowing a fast labelling with a limited amount of user interaction. 
 
Figure 4-5 shows that similar results are obtained using standard and studio microphones. Some additional 
events are detected using the ultrasonic microphones, which can be largely accounted to noises emerging in 
the ultrasonic range, which were not detectable by the studio microphones. Further investigation is needed to 
assess if those events are related with the presence of cavitation in the runner and if long-term trends can be 
derived from these findings. A limited number of clusters have been identified and are most probably related 
to various mode of operation of the units. 
 
Not only specific targets like definite recognition of cavitation and other data assignments could be 
considered in the future, but also further hardware- and software-technical developments. Such 
improvements and research may address a better ruling to filter human-voice out of signals, implementation 
and exploitation of sensor arrays for finer signal separation or pre-calculations in edge devices. 
 

 
Figure 4-5: Time evolution of anomaly score using studio and ultrasonic microphone. 
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Case C4 – Condition monitoring of rotating equipment using vibration data 

The aim of this case was to develop algorithms and models for fault detection and prediction of remaining 
useful life (RUL) of rotating equipment based on high frequency sensor data (kHz resolution and larger) 
from vibration sensors (accelerometers), acoustic emission sensors and microphones. Such high frequency 
data is normally not available in power plants. Thus, the model development was carried out with publicly 
available test data from roller bearings used in laboratory tests, see Appendix D for further details. 
 
The case resulted in a set of models for analysis of the vibration data for the purpose of RUL estimation and 
anomaly detection and classification. The modelling of RUL and anomalies does not use the monitoring data 
(i.e. the vibration data) directly, but the data is pre-processed in the feature extraction modelling step in order 
to calculate a parameter (feature, health indicator) that can be tracked and trended over time. Health 
indicators can be calculated in time and frequency domain, or combination of both (such as continuous 
wavelet transform - CWT). Mean of the signal, kurtosis, maximum amplitude, root mean square (RMS) and 
square mean root (SMR) are examples of features.  
 
RUL estimation is based on trending the health indicator, as illustrated in Figure 4-6. In the beginning, 
illustrated in the left diagram for the (current) time 4262, the uncertainty regarding further development of 
the indicator is quite large. This is indicated with the blue lines representing different possible trajectories for 
the further health indicator development. The red line is the mean (expected) development, representing the 
mean lifetime of the bearing, given the observations until current time. The uncertainty decreases when more 
data become available, as illustrated in the middle and right diagram. The predicted lifetime will be updated 
step by step, as more data becomes available. Consequently, the RUL estimate, which is the difference 
between current time and predicted lifetime, can also be updated step by step. 
 

 
Figure 4-6: Lifetime prediction and RUL estimation, and updating step by step over time,  

illustrated for three examples representing different times in early life (left, current time = 426), 
middle of the life (middle, current time = 1126) and close to end of life (right, current time = 1226). 

Courtesy of J. Yuan [12]. 

The approach of anomaly classification (i.e. the classification of anomalies in different states from slight to 
large/significant) allows for monitoring the development of degradation from a condition as good as new (no 
degradation, no anomalies, normal behaviour) to a condition with major degradation (large anomalies). An 
example is illustrated in Figure 4-7 where the evolution of the condition over the bearing lifetime is 
illustrated on a condition scale from 1 (working condition) to 7.   
 

 
2 The time may be measured e.g. in hours, or operational hours, or as data/indicator count, meaning that 426 represents 
the 426th time that the health indicator that is calculated. If, e.g. the health indicator is calculated every 6th hours of 
operation, 426 corresponds to 2556 hours of operation time. 
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Figure 4-7: Anomaly classification (classification in condition states 1 to 7) and evolution of  

condition over bearing life [13]. 

 

Case C5 – Condition monitoring of generator bearings 

Bearings are important generator and turbine components that have been known to cause problems when 
aging, such as vibrations, bearing wear, lubrication problems or misalignment. The aim of this case is to 
develop algorithms for early detection of bearing degradation or faults using available SCADA data. 
 
To enable dynamical condition monitoring, models that predict the normal behaviour of bearing temperature 
have been built and tested using artificial neural networks (ANNs). Both multilayer perceptron, recurrent 
neural networks, self-organizing maps and long short term memory (LSTM) neural networks have been 
tested. The models predict the normal relation between multiple parameters, such as power, bearing 
temperature and bearing vibration. Comparing the model predictions with actual measurements, deviations 
from normal behaviour can be identified. 
 
The challenge for the selected examples (Dale and Nygard power plants) is that the data sets for which the 
models have been trained and tested do not represent a period of stable normal behaviour, because a 
degradation process (bearing wear) is ongoing, resulting in a continuously changing situation with increasing 
damage and bearing temperature. This resulted in less than ideal results for models built with multilayer 
perceptrons and recurrent neural networks (see appendix E). 
 
To overcome this problem, a long short term memory (LSTM) neural network model was tried [14]. LSTM 
is one of the most successful modern recurrent neural networks architectures for sequence learning tasks. An 
LSTM model was built for the Nygard power plant to predict the current bearing temperature from a 
sequence of foregoing measurements of the temperature. Selected results are shown in Figure 4-8. The upper 
left diagram illustrates the training of the model, the lower left diagram the testing of the model, the upper 
right diagram the testing of the model compared with actual measurements, and the lower right diagram the 
model error (the difference between the predicted and measured values). It is in the two right diagrams seen 
that the model at first predicts the increasing bearing temperature well, but that the prediction gradually 
deviates from the actual measured values. This is seen as a sign of anomalies, i.e. that the way in which the 
bearing temperature is increasing is changing. 
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Figure 4-8: LSTM based prediction of upper guide bearing temperature. Courtesy of J. Yuan [14]. 

Finally, a clustering technique was tried for the Nygard power plant [15] using data for active power, guide 
vane opening and bearing temperature. It was illustrated how such a technique can identify and illustrate 
patterns of normal behaviour for the bearing in terms of these parameters. The technique yielded promising 
results for tracking the abnormal bearing temperature developing at Nygard. 
 

Case C6 – Condition monitoring of Kaplan turbine hydraulic system 

The aim of this case was to develop algorithms for monitoring the condition of the hydraulic regulation 
system for a Kaplan turbine using SCADA data. The work was carried out by professor Miguel Sanz-Bobi 
from Comillas Pontifical University in Madrid, Spain, in close collaboration with the hydropower plant 
operator and MonitorX industry partners Glitre and Vattenfall. Part of the motivation for this work is that the 
Kaplan propeller and hub is not accessible for inspection during production. A method for online condition 
monitoring without the need for unwanted production stops is therefore beneficial. The hydraulic system is 
of special interest as it is vital for the control of the turbine, and because e.g. oil leakage is a known issue. 
 
A Kaplan turbine is regulated by adjusting the position of the wicket gates and the turbine runner blades. 
This is done by a high-pressure hydraulic system, typically consisting of an oil tank, oil pumps, valves, 
filters, coolers, and accumulator banks for the wicket gates and runner blades. To enable dynamical 
condition monitoring of this system, a normal behaviour model was developed for the level in the oil tank, 
using artificial neural networks (ANN). This model predicts the normal state of a variable, in this case the oil 
level, from other explanatory variables. Based on a physical understanding of the system, the explanatory 
variables were chosen to be the power, the oil tank temperature, and the oil level in the accumulators. Before 
the model can be used for anomaly detection, the model first learns the normal behaviour from carefully 
selected historical data. Once trained, the model can be used to detect anomalies, i.e. deviations from normal 
behaviour; see Appendix F and references [16] and [17] for further details. 
 
Selected results are shown in Figure 4-9. The left diagram illustrates the training of the model, and the right 
diagram testing of the model for anomaly detection. It can be seen that the model accurately predicts the 
systems normal behaviour for the training set (left), and that an apparent anomaly is detected in the test set 
(right). The increasing deviation between the model (estimated value) and real data (real value) in the test set 
indicates a possible oil leakage. This was confirmed by the plant operator to be a leakage in one of the 
accumulators. 
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Figure 4-9: Estimated value from the ANN model and real measured value for the oil tank level for the 

training data set (left) and the test data set (right). Courtesy of Prof. M. A. Sanz Bobi. 

The model was also tested on data from the hydropower plant operator and MonitorX industry partner 
Vattenfall. The test confirmed the ability of ANNs to accurately predict the normal behaviour of the 
hydraulic system. The ANN model must however be rebuilt and trained for the hydraulic system at hand, 
showing that significant work is required to deploy such models for multiple turbines. 
 

Case C7 – Fault detection for power transformers 

An efficient and working cooling system is important to limit the temperature of the oil in power 
transformers, since high temperatures cause aging of the winding insulation paper. The aim of this case was 
to develop and test models for monitoring the performance of the transformer cooling system. To this aid, a 
feed forward neural network model was developed to predict the top oil temperature from the transformer 
load and the cooling water temperature. Comparing this prediction with actual values can then identify 
possible cooling system fault. All data used in the case were from Skagerak's Uvdal 1 power plant. As seen 
in Figure 4-10, the trained model for the transformer top oil temperatures is not that accurate. However, it 
still follows most trends, and with a suitable threshold value, the accuracy may be good enough to be used to 
discover severe degradation in cooling performance. Further details can be found in Appendix G. 
 
There are multiple possible causes for the inaccuracy. The top oil temperature is only predicted from two 
parameters, and there may be other factors affecting the temperature. The internal design and temperature 
sensor placements of transformers varies, and this affects the extent to which the top oil temperature is 
governed by the transformer load and cooling water temperature. Since the load on the transformer varies a 
lot, the transformer is in general not in steady state. Hence, a time-dependent model may be more suitable. 
To this aid, a model was also developed using a recurrent network. This model performed only slightly better 
than the simple feed forward network. The improvement may have been limited by a time resolution of only 
one hour that not necessarily captures all important dynamics. 
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Figure 4-10: Prediction of the top oil temperature of the transformer in Uvdal 1 power plant  

using a feed forward network. 

 

Case C8 – SCADA data collection system 

Making data available from the power plant is a basic starting point for any analytics or algorithms for 
predictive maintenance. At the start of the MonitorX project in 2015, it was a particular challenge to get 
access to data from power plants. One of the reasons for this was that it was not accepted to access the 
SCADA and dispatch center to extract the data. 
 
Voith Hydro AS agreed to look at this challenge, in a cooperation with TrønderEnergi, and to develop and 
test new solutions for better data access. Voith had supplied a new control system to TrønderEnergi's power 
plant Brattset in 2014. The new solution for data access, that was added to the control system, transfers the 
data to a server in Heidenheim (Voith head office), Germany, from where TrønderEnergi, SINTEF and other 
MonitorX partners could download the data via a simple interface. The data was used for different tests and 
verification, including the above described case C2. 
 
The PLC configuration of the solution is shown in Figure 4-11. The additional hardware that was added to 
transport the data out of the plant is shown in the upper right corner. Further details can be found in 
Appendix H. The data has been collected directly from the PLCs with a time resolution of approximately 1 
second. In total approximately 1200 signals are transferred, out of this approximately 10 % are analogue 
values (measurement values like temperature, current, pressure, etc.) and 90 % are digital signals (status 
changes, alarms or commands like on/off, open/closed, alarm level crossed, etc.). In total 32 GB of raw data 
is stored from March 2017 until May 2019. 
 



 

PROJECT NO. 
502001174 

REPORT NO. 
2019:00796 
 
 

VERSION 
1.0 
 
 

28 of 47 

 

 
Figure 4-11: Brattset PLC structure. 

 

Case C9 – Continuous servomotor monitoring 

By monitoring the development in friction forces on the guide vanes in a Francis turbine over time, changes 
in the condition of the turbine and servo system can be determined. In this case study, changes in servomotor 
forces are determined using a machine learning method. Four identical large Francis turbines (> 300 MW) 
from the same plant are studied, called unit A1-A4. The work was carried out by Anders Willersrud from 
Hymatek Controls, and Master student Asgeir Aasnes [18], [19]. 
 
Today the friction forces are typically inspected manually by logging and investigating the differential 
pressure in the servomotors while performing a “servo indication”. During this operation the guide vanes are 
slowly operated from 0-100-0 % opening. The goal in this case study is to investigate how the manual 
inspection can be automated by constantly monitoring friction forces during operation, through differential 
pressure measurements in the hydraulic system. 
 
Friction forces are calculated from pressure measurements during production. As can be seen to the left in 
Figure 4-11, the different servos requires different differential pressure (“Delta force”) to change direction, 
indicating different levels of wear and/or friction in the turbine and mechanical system.  



 

PROJECT NO. 
502001174 

REPORT NO. 
2019:00796 
 
 

VERSION 
1.0 
 
 

29 of 47 

 

 
Figure 4-12: Differential servo forces (Delta force) for all four units during production (left).  

Support Vector Machines defining the boundary of the data for unit A2 (right). 

One Class Support Vector Machine (OC SVM) is used for the analysis, and was found to create a model that 
accurately defines the boundary for the servo forces, being able to detect changes in the servo forces. The 
results for unit A2 is seen to the right in Figure 4-11. Similar results were found for the three other units, and 
are therefore left out. The boundary found using OC SVM is plotted as a red line, the support vectors used to 
create the model are also plotted. All data located inside the boundary is classified as normal, data located on 
the outside as abnormal.   
 
Any new data will be checked against the boundary found by the machine learning model, where increase in 
wear will change the friction band for a given opening/load of the turbine. The trained method can then be 
used to classify new data as normal or degraded, giving a method for continuously detecting wear of the 
Francis turbine.  
 

Case X1 – OSIsoft PI model integration 

For the Laxede plant, it was shown how normal behaviour models, such as the models used in case C6 and 
C7, can be integrated with the commercial software tool OSIsoft PI for live continuous anomaly detection 
[20]. Several MonitorX project partners started to use OSIsoft PI for collection, storing, presentation and 
analysis of data and analysis results. To be able to run models and algorithms and models developed in 
Python or MATLAB, an integration between OSIsoft PI and Python/MATALB is required. OSIsoft PI offers 
several possibilities for integration, and in a student project carried out at SINTEF in summer 2018, Eivind 
L. Andreassen has tested and evaluated three options for integration of models into OSIsoft PI: 
 

1. OSIsoft PI Asset Analytics' native integration solution with MATLAB Production Server 
2. Accessing an API written in a language other than MATLAB 
3. Using the PI Server Web API 

 
Further details for these three options can be found in [20]. An example for the option no. 2 (Accessing an 
API written in a language other than MATLAB) can be found as open source code at GitHub [21]. 
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5 Overview of deliverables and other MonitorX results 
 
Deliverables from MonitorX project and various other results are summarized in this chapter. This consists 
of: 

• Reports and memos (see Section 5.1) 
• Articles in scientific journals and conference proceedings (see Section 5.2) 
• Presentations at workshops, seminars and conferences (see Section 5.2) 
• Master student theses and summer student reports (see Section 5.3) 
• Meetings and seminars organized by the project (see Section 5.4) 
• Spin-off projects (see Section 5.5) 
• Models, algorithms and corresponding codes (see summary in Section 4.2 and corresponding 

appendices) 
 

5.1 Reports and memos 
 
Table 5-1 provides an overview of the MonitorX reports that are not related to a specific case, but that 
discuss general topics or provide a project or case overview. 
 
Table 5-1: MonitorX reports and memos that are not related to a specific case. 

No. 
3 

YY-MM Title Responsible institution 
and main 
contributors/authors 

L1 16-08 Current status of condition monitoring in 
Norwegian and Swedish hydropower plants [1] 

SINTEF: 
T. Welte, M. Istad, M.L. 
Kolstad, E. Solvang 

L2 16-12 Review of analytics methods supporting anomaly detection 
and condition based maintenance [2] 

Comillas University: 
M. A. Sanz-Bobi 

L8 19-06 Lifetime and maintenance modelling utilizing monitoring 
data [3] 

SINTEF: 
T. Welte, J. Vatn, M.A. 
Sanz-Bobi, H. Srivastav 

L12 19-06 MonitorX - Summary of results, recommendations for use 
of results, and suggestions for further work (present report) 

SINTEF: 
T. Welte, J. Foros 

 
In addition to the reports in Table 5-1, two reports were prepared in the project that present results related to 
specific cases; see Table 5-2. For other case-specific results, see Sections 5.2 (Dissemination) and 5.3 
(Student projects), and the appendices to this report. These results present different models and algorithms 
for condition monitoring in different versions, as well as descriptions and specifications regarding input data 
requirements, model application and modelling results. Thus, these results represent the project deliverables 
L4 - L7 and L9 - L113. There is also a memo (L3 "MonitorX case studies and prototypes – Preliminary 
specifications" [22]) that were written in an early phase of the project and that presents preliminary ideas and 
specifications for selected MonitorX cases. 

 
3 The numbers L1 - L12 refer to deliverables specified in the MonitorX project proposal submitted to the Research 
Council in 2014. The original planned deliverables are: L4, L5 and L10: Prototypes of models/algorithms in different 
versions. L6: PostDoc report. L7: Models for condition monitoring. L9: final specification of prototypes. L11: User 
guides. Since the approach in MonitorX was case-based, it was decided to rather have documentation per case. This 
documentation covers the content of the originally planned deliverables L4 - L7 and L9 - L11. 
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Table 5-2: MonitorX reports and memos that are related to a specific case. 

Year Type: Title Responsible institution and main 
contributors/authors 

Case 
no. 

17-03 Report: Anomaly Detection Analysis in 
Dale 2 hydropower plant [23] 

Comillas University: 
M.A. Sanz-Bobi 

C5 

19-02 Report: Normal behaviour modelling 
oriented to diagnosis and prognosis [17] 

Comillas University: 
M.A. Sanz-Bobi 

C6 

 

5.2 Dissemination – Presentations and articles 
 
Table 5-3 shows a list of dissemination results. Dissemination results are presentations, papers and articles 
that have been published in open publication channels, such as national and international seminars and 
conferences, web sites, and papers and articles in journals and magazines. MonitorX has published (number 
of publications in parenthesis, + indicates planned publications): 
 

• Scientific articles in journals and conference proceedings (4 + 1 submitted) 
• Presentations at international conferences and seminars (4) 
• Presentations at Scandinavian (NO/SE) conferences and seminars (10)  
• Articles and interviews published in trade magazines (5 + 1) 
• Articles published on web sites not owned by a project participant (2) 
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Table 5-3: MonitorX dissemination results that are publicly available or that have been presented at open conferences and seminars. 
 

Date Title Author(s) Type of 
publication 

Publication channel Type of 
publication 
channel 

Issue, pages Place Case 

1 Oct. 2015 Mer vedlikehold for 
pengene  

Atle Abelsen (journalist) Article 
(interview) 

Energiteknikk Trade magazine 
(NO) 

nr. 7, Oct. 2015, 
pp. 18-19 

 
 

2 March2017 Nytteverdier av digital 
transformasjon  

Thomas Welte, Børge Stafne 
(SINTEF) 

Article Energiteknikk Trade magazine 
(NO) 

nr. 2, March 
2017, pp. 32-33 

 
 

3 2017-03-06 Nytteverdien av digital 
transformasjon i 
vannkraftbransjen  

Thomas Welte, Børge Stafne 
(SINTEF), Øyvind Holm 
(Voith) 

Presentation Production-technical 
conference (PTK) 

Conference 
(NO) 

 
Stavanger  

4 2017-03-23 Digital transformasjon - 
Nåsituasjon og muligheter 
for vedlikehold av 
vannkraftverk  

Thomas Welte (SINTEF) Presentation Watervalley annual 
conference 

Conference 
(NO) 

 
Oslo  

5 2017 June 
(?) 

Digitalisering ska forbättra 
møjligheterna at hitta fel  

Daniel Løfsted (journalist 
ERA) 

Article 
(interview) 

ERA Trade magazine 
(SE) 

nr. 6, 2017,  
p- 33 

 
 

6 2017-10-26 Digital transformasjon 
nåsituasjon og muligheter 
for vedlikehold av 
generatorer for fremtiden  

Thomas Welte (SINTEF), 
Mostafa Valavi (NTNU) 

Presentation Forum for generatorer Conference 
(NO) 

 
Gardermoen C1 

7a 2017-12-22 Graver i fjellets hemmelige 
gullgruve  

Claude Olsen (journalist) Article 
(interview) 

Gemini Web page (NO) 
  

 

7b 2018-01-03 Graver i fjellets hemmelige 
gullgruve 

Claude Olsen (journalist) Article 
(interview) 

enerWE - 
Energibransjens 
digitale kanal 

Web page (NO) 
  

 

8a 2017-09-11 Deep Learning Approach to 
Multiple Features Sequence 
Analysis in Predictive 
Maintenance 

Jin Yuan (NTNU, Shandong 
Agricultural University), 
Kesheng Wang (NTNU), Yi 
Wang (Plymouth University) 

Presentation IWAMA 2017 - 
International 
Workshop of 
Advanced 
Manufacturing and 
Automation  

Conference 
(international) 

 
Changzhou C4 
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Date Title Author(s) Type of 

publication 
Publication channel Type of 

publication 
channel 

Issue, pages Place Case 

8b 2018-02 Deep Learning Approach 
to Multiple Features 
Sequence Analysis in 
Predictive Maintenance 

Jin Yuan (NTNU, Shandong 
Agricultural University), 
Kesheng Wang (NTNU), Yi 
Wang (Plymouth University) 

Article (article 
collection/conf
erence 
proceeding) 

In: Wang K., Wang 
Y., Strandhagen J., 
Yu T. (eds) Advanced 
Manufacturing and 
Automation VII. 
IWAMA 2017. 
Lecture Notes in 
Electrical Engineering  

Conference 
proceeding 

Lecture Notes 
in Electrical 
Engineering, 
no. 451, pp. 
581-590 

 
C4 

9 2018-03-20 Prediktivt underhåll - 
Erfarenheter från MonitorX 

Thomas Welte (SINTEF) Presentation Workshop 
(Energiforsk): 
Digitaliseringen inom 
energisektorn  

Workshop/ 
seminar (SE) 

 
Stockholm  

10 2018-04-12 MonitorX - Experience 
from a Norwegian-Swedish 
project on digitalization of 
hydropower inspection and 
maintenance  

Thomas Welte (SINTEF) Presentation Workshop/seminar 
(VGB): Digitalization 
in Hydropower 

Workshop/ 
seminar (SE) 

 
Wien  

11 2018-06 Allerede resultater fra 
MonitorX  

Atle Abelsen (journalist) Article 
(interview) 

Energiteknikk Trade 
magazine NO) 

nr. 5, June 
2018, p. 38 

 
 

12a 2018-06-19 Anomaly indicators for 
Kaplan turbine components 
based on patterns of normal 
behavior 
 

Miguel A. Sanz-Bobi 
(Comillas), Thomas Welte 
(SINTF), Lasse Eilertsen 
(Glitre) 

Presentation European Safety and 
Reliability 
Conference (ESREL) 
2018 

Conference 
(international) 
 

 Trondheim C6 

12b 2018-06-19 Anomaly indicators for 
Kaplan turbine components 
based on patterns of normal 
behavior 

Miguel A. Sanz-Bobi 
(Comillas), Thomas Welte 
(SINTF), Lasse Eilertsen 
(Glitre) 

Article 
 

S. Haugen, C. van 
Gulijk, T. Kongsvik, 
J.E. Vinnem: Safety 
and Reliability – Safe 
Societies in a 
Changing World, 
CRC Press, June 2018 
 

Conference 
proceedings 

pp. 1003-1010  C6 
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Date Title Author(s) Type of 

publication 
Publication channel Type of 

publication 
channel 

Issue, pages Place Case 

13a 2018-10-17 MonitorX – Experience 
from a Norwegian-Swedish 
research project on industry 
4.0 and digitalization 
applied to fault detection 
and maintenance of 
hydropower plants  

Thomas Welte, Jørn Foros 
(SINTEF), Martin H. 
Nielssen (Energy Norway), 
Monika Adsten 
(Energiforsk) 

Presentation Hydro 2018 Conference 
(international) 

 
Gdansk  

13b 2018-10-17 MonitorX – Experience 
from a Norwegian-Swedish 
research project on industry 
4.0 and digitalization 
applied to fault detection 
and maintenance of 
hydropower plants  

Thomas Welte, Jørn Foros 
(SINTEF), Martin H. 
Nielssen (Energy Norway), 
Monika Adsten 
(Energiforsk) 

Article Proceedings Hydro 
2018 

Conference 
proceeding 

  
 

14 2018-10-25 MonitorX - Foreløpige 
resultater 
 

Thomas Welte (SINTEF) Presentation Digitalisering i 
vannkraften 

Workshop/ 
seminar (NO) 

 Gardermoen  

15 2019-03 Bør finne digitale allierte Atle Abelsen (journalist) Article 
(interview) 
 

Energiteknikk Trade 
magazine NO) 

nr. 2, March 
2019, pp. 16-17 

  

16  LSTM Based Prediction 
and Time-Temperature 
Varying Rate Fusion for 
Hydropower Plant 
Anomaly Detection:  
A Case Study 
 

J. Yuan (NTNU) Presentation IWAMA 2018 - 
International 
Workshop of 
Advanced 
Manufacturing and 
Automation 

Conference 
(interational) 

 Changzhou C5 

16a 2018-12-15 LSTM Based Prediction 
and Time-Temperature 
Varying Rate Fusion 
for Hydropower Plant 
Anomaly Detection: A 
Case Study 

J. Yuan (NTNU), Y. Wang 
(Plymouth University), K. 
Wang (NTNU) 

Article (article 
collection/ 
conference 
proceeding) 

In: Wang K., Wang 
Y., Strandhagen J., 
Yu T. (eds) Advanced 
Manufacturing and 
Automation VIII. 
IWAMA 2018. 

Conference 
proceeding 

vol. 484,  
pp. 86 - 94 

 C5 
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Date Title Author(s) Type of 

publication 
Publication channel Type of 

publication 
channel 

Issue, pages Place Case 

Lecture Notes in 
Electrical Engineering 
 

17 2019-03-05 MonitorX – Resultater fra 
FoU-prosjektet og erfaringer 
fra overvåkning av Kaplan-
hydraulikksystem 
 

Thomas Welte (SINTEF), 
Mattias Nässelqvist 
(Vattenfall) 

Presentation Production-technical 
conference (PTK) 

Conference 
(NO) 

 Oslo  

18 2019-04-25 Digital reise mot prediktivt 
vedlikehold innenfor 
kraftproduksjon. MonitorX 
– et norsk-svensk 
samarbeidsprosjekt. 
 

Thomas Welte (SINTEF) Presentation The Norwegian Smart 
Grid Centre, 
Technical seminar 

Workshop/ 
seminar (NO) 

 Trondheim  

19 2019-05-09 MonitorX - Et norsk-
svensk samarbeidsprosjekt 
om tilstandsovervåking og 
prediktivt vedlikehold 
 

Thomas Welte (SINTEF) Presentation Digitalisering i 
vattenkraften 
- Nya möjligheter till 
prediktivt underhåll 

Workshop/ 
seminar (SE) 

 Arlanda  

20 2019-05-09 Tillståndsövervakning med 
OSI PI och oljevolyms-
övervakning i Laxede 

Mattias Nässelqvist 
(Vattenfall) 
 

Presentation Digitalisering i 
vattenkraften  
- Nya möjligheter till 
prediktivt underhåll 
 

Workshop/ 
seminar (SE) 

 Arlanda C6 

21 2019-05-09 Tidsbesparende 
tilstandskontroll av 
lensepumpe i Brattset 
kraftverk: Kan en enkel 
nivåmåler si noe om 
tilstanden? 
 

Viggo G. B. Pedersen 
(NTNU) 

Presentation Digitalisering i 
vattenkraften 
- Nya möjligheter till 
prediktivt underhåll 

Workshop/ 
seminar (SE) 

 Arlanda C2 
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Date Title Author(s) Type of 

publication 
Publication channel Type of 

publication 
channel 

Issue, pages Place Case 

22 June 2019 Anomalideteksjon for å 
avdekke feil i 
vannkraftanlegg 
 

Thomas Welte, Jørn Foros 
(SINTEF) 

Article Energiteknikk Trade 
magazine 
(NO) 

nr. 4, June 2019,  
pp. 36-37 

  

23 Sub-mitted 
(June 2019) 

Anomaly detection method 
based on the evolution of 
patterns in industrial 
components. Application to 
a hydropower plant 
 

Pablo Calvo Báscones, 
Miguel Ángel Sanz Bobi 
(Comillas), Thomas M. 
Welte (SINTEF) 

Article Engineering 
Applications of 
Artificial Intelligence 

Journal   C5 

24 planned 
public-
cation 

Twin Exponential 
Degradation Model for 
Online Remaining Useful 
Life Prediction 
 

Jin Yuan, Kesheng Wang 
(NTNU) 

Article     C4 



 

PROJECT NO. 
502001174 

REPORT NO. 
2019:00796 
 
 

VERSION 
1.0 
 
 

37 of 47 

 

5.3 Student projects and student reports/master theses 
 
Cases C1, C2, C5, C6, C7 and X1 involved master students, either as part of regular studies where the 
students work with semester and master projects (Table 5-4), or as summer student projects at SINTEF 
(Table 5-5). 
 
Table 5-4: Master student projects. 

Student Title Type University Department Date Case 
no. 

Frøydis 
Kvinen 

Model for Condition 
Monitoring of Pumps in 
Hydro Power Plants [10] 

Semester 
project 
report 

NTNU Electric Power 
Engineering 

January 
2016 

C2 

Kari Gjerde 
Jørstad 

Modelling, simulation, and 
on-line detection of rotor 
fault in hydrogenerators [8] 

Master 
thesis 

NTNU Electric Power 
Engineering 

June 
2016 

C1 

Kishan 
Prajapati 

Condition monitoring of 
pump in hydropower plants 
[11] 

Semester 
project 
report 

NTNU Mechanical and 
Industrial 
Engineering 

May 
2018 

C2 

Beatriz 
García 
Alejo 

Definition of anomaly 
indicators and condition 
prognosis on components 
of a hydropower plant [24] 

Master 
thesis 

Comillas 
University 

Institute for 
Research in 
Technology 

July 
2018 

C5 / 
C6 

Kishan 
Prajapati 

Topic: Condition-based 
maintenance of pumps in 
hydropower plants 

Master 
thesis 

NTNU Mechanical and 
Industrial 
Engineering 

To be 
decided 

C2 

 
Table 5-5: Summer student projects. 

Student Title Date Case no. 

Torfinn Tyvold Analysis of increasing guide bearing 
temperatures at Nygard power plant 
[25] 

January 2016 C5 

Eivind Lie Andreassen Condition monitoring of hydro power 
components using machine learning 
[20] 

June 2016 C6, C7, X1 
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5.4 Meetings and seminars 

5.4.1 Project meetings 

During the MonitorX project, eight meetings with the project's steering committee were organized. These 
meetings were often extended with a technical programme or a side event, see Table 5-6. 
 

Table 5-6: MonitorX meetings and side events/programme to these meetings. 

Date Place, country (host) Technical side programme or other side event 
2015-10-21…22 Uppsala, SE - 
2016-04-14…15 Oslo, NO (Energi Norge) Workshop on case identification on day 2 of 

meeting. 
2016-10-19…20 Bergen, NO (Karsten Moholt) Visit of Karsten Moholt's workshop. 
2017-04-25…26 Stockholm, SE (Energiforsk) Seminar at Svenska Kraftnät. 
2017-11-28…29 Trondheim, NO (Voith) - 
2018-04-24…26 Älvkarleby, SE (Vattenfall) Visit of Vattenfall RnD laboratories. 

Visit of Forsmark nuclear power plant. 
Seminar together with nuclear power plant 
operators, see Table 5-7. 

2018-10-24 Jevnaker, NO (Andritz) Visit of Andritz' workshop. 
Seminar at Gardermoen the day after the meeting, 
Table 5-7. 

2019-05-08 Arlanda, SE MonitorX final seminar arranged the day after the 
meeting, see Table 5-7. 

 

5.4.2 Seminars and sessions co-organized by MonitorX 

The MonitorX project contributed to the organization of two seminars on digitalization and predictive 
maintenance of hydropower. Furthermore, a workshop with the nuclear power industry and two conference 
sessions were co-organized by Energy Norway, Energiforsk and the project, see Table 5-7. The aim of these 
events was to disseminate MonitorX results and to exchange knowledge and experience with other industries 
and companies that did not participate in the MonitorX project. 
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Table 5-7: Workshop, seminars and conference sessions co-organized by Energy Norway, Energiforsk 
and the MonitorX project. 

Date Place (host) Title Type Comment 
2018-04-26 Forsmark Predictive maintenance in 

nuclear power and hydropower 
Workshop Workshop organized by 

Energiforsk 
2018-10-25 Gardermoen Digitalisering i vannkraft - 

tilstandsovervåking og 
prediktivt vedlikehold 
(Digitalization in hydropower - 
condition monitoring and 
predictive maintenance) 

Seminar Seminar organized by 
Energi Norge together with 
MonitorX 

2018-03-05 Oslo Produksjonsteknisk konferanse 
(PTK) – Production-technical 
conference 

Conference 
session 

To sessions organized by 
MonitorX: 
• Session 2C2: Bransjens 

felles innsats for økt 
digitalisering 

• Session 2C5: Oppspill og 
paneldebatt: Monitorering 
og tilstandsovervåkning: 
Hvor er vi om ti år? Og 
hva vil kreves av 
selskapene for å komme 
dit? 

2019-05-09  Digitalisering i vattenkraften Seminar Seminar organized by 
Energiforsk together with 
MonitorX 

 

5.5 Spin-off projects and activities 

5.5.1 RDS Hydro 

In hydropower, there are a number of reference designation systems (RDS) that are used for different 
purposes and that are applied in the companies to various degree. These include, e.g.: 
 

• RDS-PP [26], and its international implementation ISO/TS 81346-10:2015, which is the further 
development of the proven identification system for power plants KKS 

o RDS-PP is a proprietary standard developed by VGB [27] 
o ISO/TS 81346-10:2015 is currently under review by ISO and a new version is under 

development. The new version will probably not be based on RDS-PP. 
• EBL code (EBL-kodeplan), the RDS currently used by most Norwegian hydropower plant operators, 

developed by EBL/Energi Norge 
o This system has number of drawbacks, and is a special national system  

• NEK 321 – 322 
o Has been withdrawn by the Norwegian electrotechnical committee (NEK) 

• A number of (proprietary) designation systems used by manufacturers and service providers 
 
The drawbacks of the EBL code required a further development of the EBL code, or a completely new 
development of a hydropower specific RDS. A working group, consisting of twelve of the largest Norwegian 
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power companies, and supported by the Swedish hydropower industry (represented by Energiforsk), were 
established in 2018 by Energi Norway and the MonitorX project to discuss the mentioned challenges and 
develop solutions. The working group decided to develop a new RDS based on the principles in IEC/ISO 
81346 [28], [29], and a spin-off project (RDS NES – Norwegian Energy System) were started for this 
purpose. The final result of the spin-off project is a new and consistent RDS for hydropower plants (RDS-
HYP, available since 2019) that follows the principles of IEC/ISO 81346. 
 
RDS HYP was presented to the ISO/IEC working committee ISO/TC 10/SC 10 responsible for RDS and the 
IEC/ISO 81346 series. Since RDS HYP is quite general, the idea is to upgrade RDS HYP to a new RDS for 
the whole power system (RDS PS) that includes all types of power production, power distribution and power 
transmission assets. 

5.5.2 PhD on generator fault detection at NTNU (HydroCen) 

The activities in case C1 in MonitorX were restricted to theoretical analyses and data received from FEM. In 
order to follow up the results that have been obtained, a new PhD-position was established in HydroCen, the 
Norwegian Research Centre for Hydropower Technology. A new PhD candidate (Hossein Ehya) started in 
autumn 2018. The title for the PhD work is "Electromagnetic analysis and on-line fault detection in 
hydropower generators". The work includes testing of methods developed in MonitorX case C1 with data 
from laboratory test and from the field. For this purpose, NTNU has purchased and installed a lab-scale 
generator that has a very similar design as many hydro generators. With the lab generator, one has the 
possibility to introduce typical generator faults, such as winding short circuits and eccentricity (eccentric 
alignment of rotor shaft) and test methods for condition monitoring and models for fault detection. 
 
First results are expected before summer 2019 from two master student projects (students: Ingrid Linnea 
Growth and Johan Henrik Holm Ebbing). The master theses will be finished June 2019 and can usually be 
found later (autumn 2019) in the academic libraries' data base "Oria" [30] or in the open access data base 
NTNU Open [31].   
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6 Project benefits 
 
The MonitorX results consist of a set of models and algorithms for condition monitoring, detection of faults 
and prediction of remaining lifetime. The use of such types of models by power plant operators results in 
better maintenance and reinvestment decisions and allows for a transition to a more predictive maintenance 
strategy. 
 
In section 6.1 follow examples that illustrate the potential benefits of using project results, and condition 
monitoring and predictive maintenance in general. In section 6.2, the potential benefit of using condition 
monitoring for hydropower plant tunnels (headrace/tailrace tunnels) is illustrated with a benefit estimate for a 
specific power plant. Such estimates could be in principle also calculated for other power plants and 
monitoring use cases. 
 
Note that the benefits described in sections  6.1 and 6.2 require that results as developed by the MonitorX 
project in form of models and algorithms actually are used for condition monitoring by the power plant 
operators to realize a predictive maintenance strategy. A direct benefit of the MonitorX project is knowledge 
building and exchange of experience, as discussed in Section 6.3. 
 

6.1 General benefits and benefit estimates for Norwegian hydropower plant operators 
 
In a study conducted for the Research Council of Norway [32] [33], the potential benefit of condition 
monitoring and predictive maintenance for Norwegian hydropower plant operators was described and 
estimated as follows: 

• 650 MNOK (ca. 68 MEUR) as an effect of postponed investment costs as a result of better 
knowledge about the component's actual condition and remaining lifetime.4 

• 4 000 MNOK (ca. 420 MEUR) as a consequence of reduced production losses due to less downtime 
for corrective and preventive maintenance.5 

• Reduced inspection costs due to fewer manual inspections 
• Shorter maintenance downtime by using more condition-based and less time-based maintenance. 
• Reduced cost for corrective maintenance due to reduced probability of failure. 
• Better knowledge about the real technical condition of the components and the relation between 

operation conditions, loads, degradation and lifetime. 
 
The quantitative benefit estimates above are calculated with a general approach and with cost figures 
representing all Norwegian hydropower plant operators. The benefit of a monitoring solution for a specific 
power plant component is exemplified in the following section. 
  

 
4 This estimate is based on a survey conducted by SINTEF when the MonitorX project proposal was developed in 2014. 
Ten Norwegian hydropower plant operators were asked about their reinvestment needs for the next ten years. It was 
assumed that some of these reinvestments can be postponed by some years due to better knowledge about the technical 
condition as a result of condition monitoring. In the presented study in references [32] and [33], the estimate was 
improved by e.g. assuming that not all of the investment costs can be postponed, but a large part of the costs, whereas a 
minor part of the investments will come earlier than originally expected (due to detection of faults). 
5 Estimated present value of reduced production losses for Norwegian hydropower operators over a period of 40 years. 
It was estimated that the average production losses in Norwegian hydropower plants is around 1.25 % and that 
condition monitoring and predictive maintenance can contribute to a reduction from 1.25 % to 0.5 % within 10 years. 
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6.2 Benefit of head and tailrace tunnel fault detection 
 
The example was developed in a cooperation between Impello Management, SINTEF and two Norwegian 
power plant operators and is described in reference [33]. 
 
Rock falls in tunnels can result in head losses and reduced plant efficiency. With currently applied methods, 
it can take very long time (up to several months or a year) to detect rock falls that result in partly blockage of 
the tunnel. By using a model that estimates the head losses, a plant operator can monitor the losses and thus 
can detect larger rock falls that result in head losses much earlier than without a monitoring solution. Such a 
monitoring solution can be of relevance for many power plants in Norway; it was estimated that 
approximately half of the Norwegian power production from reservoir power plants would have a benefit of 
using such a monitoring solution. 
 
The potential benefit was estimated for a real power plant where a rock fall event and partly blockage of a 
tunnel happened. The power plant has a head of 450 m, and the rock fall in the tunnel caused a head loss of 
approx. 6 m. The head loss results in approx. 1.3 % of production loss. Table 6-1 shows how much of the 
power production is lost6 when this kind of rock fall event occurs, depending on how long time it will take to 
detect the rock fall. The monitoring solution provides the possibility of earlier detection of the rock fall, 
presumably up to several months earlier than without a monitoring solution. This means that much of the 
losses can be avoided with tunnel condition monitoring. 
 
Table 6-1: Lost production as a function of time until the tunnel rock fall is detected. 

Time until rock fall that causes 
the losses is detected 

Lost power production Lost revenues 

1 week 0.3 GWh 0.1 MNOK 
1 month 1.4 GWh 0.4 MNOK 
1 year 16 GWh 4.8 MNOK 

 

6.3 Knowledge building and exchange of experience 
 
An important benefit of the MonitorX project was the exchange of experience and knowledge between 
hydropower operators, equipment manufacturers and research. The project participants acknowledged the 
opportunity to discuss different topics related to data collection and analysis in the MonitorX consortium. 
The experience and knowledge exchange were useful for the participating companies to identify good 
solutions and best practice. This may have accelerated the implementation of data collection and condition 
monitoring solutions. Furthermore, this exchange stimulated to new activities and spin-off projects, see as 
described in Section 5.5.  

 
6 Assumed market price for electricity: 0,3 NOK/kWh. 
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7 Recommendations 
 
This section summarizes some recommendations for use of the results from the project, based on the lessons 
learned throughout the project execution. Some of the learnings and recommendations below have already 
been discussed and presented in the MonitorX overview paper presented at the Hydro 2018 conference [34]. 
 

7.1 System and platform for data collection and handling 
 
Even though MonitorX did not focus on solutions for data collection and storage, exchange of experience 
with different systems and platforms was part of the project activities. A central system or platform (big data 
platform) is one of the requirements for providing effective and easy access to monitoring and sensor data. 
Thus, the big data platform is an important link between the data sources and the data users. Automatization 
and continuous monitoring require that solutions (i.e. algorithms, models and software) for data analysis can 
be integrated in the systems/platforms or can be interconnected. 
 
One of the Monitor cases (case C8) focused on collection of data from the hydropower plant's local control 
system. The hydropower equipment manufacturer Voith developed a new solution for data access to supply 
the project with high quality data. The developed solution has been tested in the Brattset power plant, and 
data for case C2 was accessed with this solution. In case X1, it was shown how normal behaviour models can 
be integrated with a commercial big data platform (in this case OSIsoft PI) for live continuous anomaly 
detection. 
 

7.2 Type of data and data resolution 
 
The different cases illustrate recommendations and requirements for data availability and resolution. While 
cases C5 and C6 use historical data available in already aggregated form as average values from the SCADA 
system with 1 hr resolution, and case C2 uses raw data from the plant's control system with approx. 30 sec. 
resolution, requires case C1 high resolution data with 1 kHz sampling frequency or higher. These examples 
illustrate that the required data resolution depends on the type of model that is used for data analysis. 
Furthermore, the physical effects and phenomena that are analysed influence the requirements regarding data 
resolution. Slow effects, such as temperature changes and developments in large technical components that 
require several hours for heating up and cooling down (e.g. case C5), can be modelled with data of low 
resolution, whereas high frequency phenomena, such as sideband harmonics around and beyond the grid 
frequency of 50 Hz, require high resolution data. 
 

7.3 Scalability 
 
So far, the MonitorX models have only been developed for selected components. If such models are to be 
implemented on a large scale throughout an organization, the time and resources needed to do this should be 
considered. Typically, the scalability (or transferability) is a larger issue for the advanced models than the 
simple models. For example, the ANN model for Kaplan turbines (case C6) must be rebuilt and trained for 
each turbine, whereas the pump model (case C2) may be used as-is for drainage systems with the same 
design and sensor measurements available. Furthermore, maintenance-related changes in the plants may 
influence the model's predictability and accuracy and may require a re-training. Hence, approaches for 
automatic model training and updating would be helpful. 
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7.4 Competence requirements 
 
The extended use of digital systems requires an extension of available, or new, resources and competences. 
More ICT competences and resources are required to carry out the implementation of a big data platform. 
Furthermore, new resources such as data analysts or scientist might be valuable. One important aspect in this 
discussion is outsourcing of competence, i.e. to which degree the power plant operator wishes and needs to 
have new competences inhouse, or if these are bought from external service providers, hydropower 
equipment manufacturers and consultancies. 
 
When a plant operator wants to use the MonitorX results and wants to implement and run the models and 
algorithms in the own systems, knowledge on programming (MATLAB, Python) and machine learning is 
required. 
 

7.5 Selection of models and "where to start" 
 
In the cases in the MonitorX project, different models that are both of the simple and advanced type (see 
section 4.1) were developed and tested for several different components (rotor, pumps, bearings, turbine, 
transformer, etc.). The testing showed promising results, indicating that the models are good candidates for 
implementation at the companies. Selection of models for implementation should be done on basis of the 
needs of the company, as well as system/platform availability, data availability, model scalability and 
competence availability, as discussed above. In any case, it is recommended to start with models of the 
simple type. A very first start should be to implement and test simple monitoring of variables, or 
combination of variables, and monitor these variables with respect to some limit or alarm levels. 
 

7.6 Acceptance criteria and alarm levels 
 
The models should be combined with reasonable limits for acceptable deviations from normal behaviour 
("acceptance criteria"), such that anomalies can be identified, and alarms can be activated upon a detected 
anomaly. In this way, the operators will have control over the plant condition and can plan for the next 
inspection or overhaul. In some of the MonitorX cases, for example the cases where normal behaviour 
models where used and where the error between an estimated and observed signal was used as indicator for 
anomalies, it was demonstrated that the alarm levels can be chosen based on historical observations and 
model errors that have been observed for the training and test data sets (error must be larger than the 
observed errors for an alarm). Furthermore, random, intermittent and momentary anomalies are rejected, 
because they are usually caused by noise. 
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8 Further work 
 
On the one hand, MonitorX supported the project partners with knowledge and information about new 
concepts related to predictive maintenance and digitalization. On the other hand, the project provided a set of 
methods and models for different monitoring purposes. The project demonstrated through practical cases 
how these concepts can be applied to optimization of maintenance by using these methods and models for 
condition monitoring and fault detection. Furthermore, the cases demonstrated the practical application of 
different models and their advantages and disadvantages. Based on these results, recommendations regarding 
model development, application and implementation were given in the previous section. 
 
The project can be followed-up in different areas, such as: 

• Further model development and testing (incl. upscaling) 
o Applying models to all plants and components in a company 
o More advanced models, such as digital twins 

• Testing of models with field data 
o E.g. model developed in case C1, because until now only tested with FEM) 

• Developing of methods for simulation of faults in power plants (i.e. introducing "artificial" and 
"virtual" faults) 

o The purpose is testing and proof of concept of models and algorithms 
• Development of methods and models for evaluation of cost-benefit of new monitoring and fault 

detection solutions 
• Development of standards that simplify the exchange and use of data for different purposes 
• Development of methods and models for identification of causes for identified anomalies, estimate 

the criticality of anomalies, and propose suitable actions. 
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Table A.1: Documentation, codes and data sets for the MonitorX cases. 

Case 
Appen-
dix Codes 

Data 
sets 

Documentation Refe-
rence 2 Comments No. 1 Type: "Title" 

C1 - Rotor fault 
detection 

B D1.1 Master thesis: "Modelling, Simulation, and On-line 
Detection of Rotor Fault in Hydrogenerators" 

[8] In this case, a data set with 
simulated data was used. The 
simulations were made with a finite 
element model of the Kalvedalen 
generator. 

D1.2 Paper: "Electromagnetic analysis and electrical 
signature-based detection of rotor inter-turn faults in 
salient-pole synchronous machine" 

[9] 

C2 - Condition 
monitoring of 
drainage pumps 

C D2.1 Semester project report: "Model for condition 
monitoring of pumps in hydropower plants" 

[10] Some data from Laxede power plant 
was used 

D2.2 Semester project report: "Condition monitoring of 
pump in hydropower plants" 

[11] Data from Brattset power plant was 
used 

C3 - Audio 
surveillance 

- No documentation exists other than 
the description given in the main 
text 

C4 - Condition 
monitoring of rotating 
equipment using 
vibration data 

D K4.1 
K4.2 

PHM 
IMS 

D4.1 Paper Draft: "Twin Exponential Degradation Model 
for Online Remaining Useful Life Prediction"  

[12] The datasets (PHM and IMS 
datasets, see [35] and [36]) used in 
this case are not from hydro power 
plants, but from roller bearing test 
benches. 

D4.2 Paper: "Deep Learning Approach to Multiple 
Features Sequence Analysis in Predictive 
Maintenance" 

[13] 

1 () means that the case documentation can be found in the documentation for another case. 
2 Number refers to the reference list of the main report. 
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Case 
Appen-
dix Codes 

Data 
sets 

Documentation Refe-
rence 2 Comments No. 1 Type: "Title" 

C5 - Condition 
monitoring of 
generator bearings 

E K5.1 
K5.2 

Dale 
Nygard 

D5.1 Memo: "Anomaly Detection Analysis in Dale 2 
hydropower plant" 

[23] 

D5.2 Memo: "Analysis of increasing guide bearing 
temperatures at Nygard power plant" 

[25] 

D5.3 Poster: "Intelligent condition monitoring of 
hydroelectric power plants" 

[37] 

D5.4 Paper: "LSTM Based Prediction and Time-
Temperature Varying Rate Fusion for Hydropower 
Plant Anomaly Detection" 

[14] 

D5.5 Paper draft: "Anomaly detection method based on the 
evolution of patterns in industrial components. 
Application to a hydropower plant" 

[15] 

C6 - Condition 
monitoring of Kaplan 
turbine hydraulic 
system 

F K6.1 
K6.2 

Embrets
-foss
Laxede

D6.1 Paper: "Anomaly indicators for Kaplan turbine 
components based on patterns of normal behavior" 

[16] 

D6.2 Master thesis: "Definition of anomaly indicators and 
condition prognosis in components of a hydropower 
plant" 

[24] 

D6.3 Memo: "Condition monitoring of hydro power 
components using machine learning" 

[20] 

D6.4 Report: "Normal behavior modelling oriented to 
diagnosis and prognosis" 

[17] 

C7 - Fault detection 
for power 
transformers 

G (K6.2) Uvdal (D6.3) [20] This case uses the same type of 
model and code as used in case C6. 
Documentation can be found in 
section 2 in D6.3. 

C8 - SCADA data 
collection system 

H 

C9 - Continuous 
servomotor 
monitoring 

- D9.1 Master thesis: "Condition Monitoring of 
Hydroelectric Power Plants" 

[18] Additional information can be found 
in reference [19] 

X1 - OSIsoft PI model 
integration 

- KX1.1 
[21] 

(D6.3) [20] OSIsoft PI model integration is 
described in section 4 in D6.3. 
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1. Short description (abstract) 
The aim of the case was to propose and assess methods for on-line detection of rotor short-circuit 
fault and other faults in the hydrogenerators. The idea is to use spectral analysis of stator voltage and 
current for fault detection. The project started with investigation of rotor inter-turn short-circuits 
and has been further developed to include other types of faults, including eccentricity and bearing 
faults. The work was carried out as theoretical study. Data from power plants were not available for 
this case, because available SCADA data with current resolution cannot be used for this purpose. 
Thus, as an initial attempt to assess the proposed monitoring method, finite element methods (FEM) 
were used to simulate faults and their influence on the electro-magnetic field in a generator and 
finally on the current and voltage in the stator. The simulated voltage and current signals have then 
be used for evaluation of the fault detection method. The results were promising, and the plan is to 
follow up the work with lab experiments and analysis of data from the field. 
 
2. Benefit, motivation and potential users 
The aim is to be able to detect rotor faults (short circuits in winding insulation) and other faults under 
operation (online). Traditional methods are based on measurements and inspections when the 
generator is not in operation. An online method will provide the possibility to detect faults 
continuously (i.e. when they appear, and not only at planned inspections) and before they lead to a 
catastrophic failure. The method can also be basis for predictive maintenance when the method is 
extended with a model that predicts damage development. 
 
3. Selected power plants for testing 
The fault detection method developed in this case has been tested with simulated data received 
from simulations of the generator installed in Kalvedalen hydropower plant (Eidsiva) using FEM. High 
frequency stator voltage and current measurements from Kalvedalen have been collected. However, 
the measurements have not been analysed, yet. 
 
4. Methods and models 
Finite element methods (FEM) were used to simulate faults and their influence on the electro-
magnetic field in a generator and finally on the current and voltage in the stator. Both rotors in a 
healthy and faulty state were simulated. The simulations result in (simulated) voltage and current 
signals. These signals were then used in and spectral analyses, i.e. the frequencies in the 
voltage/current signal are assessed with fast Fourier transform (FFT) methods; see D1.1 [1] and D1.2 
[2] for further details. The MATALB fft function [3],[4] has been used for the FFT-analysis. The 
frequency spectrum of a generator in healthy and faulty state are compared and difference in the 
frequency spectra can be used as indicator for faults. 
 
5. Input data 
Input data for the method are either current or voltage measurements from the stator. Available 
SCADA data with current resolution cannot be used for fault detection. A sampling frequency of at 
least 500 Hz (or better: 2 – 4 kHz) and a signal length of at least 2 seconds are required.  
 
6. Other information 
This case was a collaboration between FME HydroCen (www.ntnu.no/hydrocen) and MonitorX. The 
work was initiated by MonitorX based on an idea by Joakim Gundersen (Eidsiva) and Magnus 
Holmbom (Vattenfall). NTNU (Prof. Arne Nysveen, Mostafa Valavi) have been contacted by MonitorX 
and the topic was then be carried out as a master student work by Kari Gjerde Jørstad. The work by 
Mostafa Valavi was financed by HydroCen. 

http://www.ntnu.no/hydrocen
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There are a number of other related activities to this case. Some of them are ongoing, see section 9 
on Plans for further work for further details. A master thesis related to this case was the thesis by 
Andreas Blix Møller on "Modelling, Simulation, and On-line Detection of Rotor Eccentricity in 
Hydropower Generators" [5]. 
 
7. Deliverables 
The following deliverables have been prepared: 
 

No. Deliverable 
(description/title) 

Author 
(person) 

Type of deliverable Reference 

D1.1 Modelling, Simulation, 
and On-line Detection of 
Rotor Fault in 
Hydrogenerators [1] 

Kari G. 
Jørstad 

Master thesis ./Docs/D1.1 Kari 
Gjerde Jørstad, master 
thesis 

D1.2 Electromagnetic analysis 
and electrical signature-
based detection of rotor 
inter-turn faults in 
salient-pole synchronous 
machine [2] 

M. Valavi, 
K.G. Jørstad, 
A. Nysveen 

Paper ./Docs/D1.2 Valavi, 
Jorstad, Nysveen, IEEE 
TRANSACTIONS ON 
MAGNETICS 

 
8. Summary of results 
The new method uses spectral analysis of stator voltage and current for fault detection. The results 
of the spectral analysis are illustrated for two examples in Figure 1., where the frequency spectrum 
of both a generator with healthy rotor winding and a rotor winding with faults are shown. In a case of 
an inter-turn short-circuit, in addition to the amplitudes at 50 Hz and its odd multiples, sideband 
harmonics appear at each side of the main harmonics. These sideband harmonics could be used as 
indicator for fault detection. The method requires a much higher data resolution (voltage or current) 
than usually available through the SCADA-system, and a sampling frequency of at least 500 Hz is 
recommended. However, the data collection must not necessarily be continuous, but samples of at 
least 2 seconds could be collected regularly, e.g. once in a day or week. 

  

Figure 1: Frequency spectrum of induced voltage at no-load, healthy vs. 1 turn short-circuited (left), and frequency spectrum 
of stator current at full-load, healthy vs. 20 turns short-circuited (right). Courtesy of K. G. Jørstad; D1.1 [1]. PSD: power 
spectral density. 

The detection of rotor inter-turn short-circuits was primarily investigated, but also detection of other 
types of faults, including eccentricity and bearing faults, were studied. A detailed description of the 
work and the results can be found in D1.1 [1] and D1.2 [2].  
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9. Plans for further work 
Since the method has been evaluated with simulated data (from FEM), the proof of concept with 
data from a real power plant is part of further work.  High frequency stator voltage and current 
measurements from Kalvedalen have been collected. However, the measurements have not been 
analysed, yet. The challenge is that the proof of concept with data from a real power plant requires 
measurements from a generator in faulty and healthy states, to be able to analyse differences 
between both states. 
 
This case will be followed up by NTNU and in HydroCen research centre with master projects and a 
recently started PhD work (November 2018 – November 2021, PhD candidate: Hossein Ehya) with 
working title "Electromagnetic analysis and on-line fault detection in hydropower generators". The 
plan is to test the described fault detection method, together with other methods, in a laboratory set 
up consisting of a generator where faults can be introduced. Furthermore, it is planned to extend the 
work to include measurements from generators installed in power plants. 
 
In spring 2019. There are also two master student projects ongoing; students: Ingrid Linnea Growth 
and Johan Henrik Holm Ebbing. Their master theses will be finished June 2019 and can usually be 
found later (autumn 2019) in the academic libraries' data base "Oria" [6] or in the open access data 
base NTNU Open [7]. 
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1. Short description (abstract) 
Case C2 studies operation of pumps in drainage systems in hydropower plants. Drainage pump data 
from Vattenfall's Akkats plant and TrønderEnergi's Brattset plant have been analysed. In both cases, 
methods to monitor the pump condition (represented by the pump capacity) from the available data 
have been investigated and tested. By calculating and continuously monitoring e.g. the experienced 
pump capacity, anomalies can be identified. For the Brattset plant, promising results are achieved, 
but for the Akkats plant, additional parameters appear to be needed for the model. 
 
2. Benefit, motivation and potential users 
The problem this case addresses is the uncertainty of not knowing the condition of pumps in 
hydropower stations. Today, a limited number of parameters are available for continuous online 
condition monitoring of drainage pumps in hydropower plants, and pumps are typically inspected, 
maintained and tested on a time-basis. Furthermore, the drainage system in hydropower plants is a 
redundant system with usually two or more pumps that are used in alternation, and often an 
additional drainage method (such as an ejector). Thus, the failure of one of the pumps is not critical, 
and one can operate the system with a run-to-failure strategy. Nevertheless, a failed pump should be 
replaced quickly, to ensure the redundancy and reliability of the drainage system. Furthermore, 
manual inspection and testing of the pumps requires two persons and some hours of work (which 
may include travelling to the power plant). Therefore, a condition-based pump maintenance strategy 
is desirable. This can enable a condition-based and predictive maintenance strategy, including 
degraded pumps to be replaced during planned maintenance visits, thereby avoiding extra visits for 
corrective maintenance. The aim is to achieve a better picture of the pump conditions that can 
provide predictability for the plant operator. 
 
The potential users are hydropower companies that have a system with automatic measurements of 
required parameters that are available for remote monitoring and analysis, or will acquire such a 
system, and thus can implement the model in their systems. 
 
3. Selected power plants for testing 
TrønderEnergis Brattset power plant is a reservoir power plant with Francis turbines located in 
Rennebu, Trøndelag, Norway. Built in 1982, it has output 2 x 40 MW and average annual production 
390 GWh. Vattenfalls Akkats power plant is a hydro power plant in the river Luleälven in the north of 
Sweden. The power plant is equipped with Kaplan turbines, and it has output 150 MW and average 
annual production 590 GWh. It was built between 1969 and 1973 and upgraded in 2008. 

4. Methods and models 
The model calculates parameters for monitoring pump condition, e.g. pump run time per cycle (time 
used to empty the reservoir) and experienced pump capacity (actual pumping rate). Anomalies are 
detected by comparing the results with a reference level, defined e.g. by historical data from which 
the pump was operating properly or the rated pump capacity from the pump data sheet. 
 
The model consists of simple equations and algorithms. The exact algorithm depends on the 
available data, which differs for the Brattset and Akkats plants (see section 4). The model consists of 
the following general steps:  

1. Identification of time points for start and stop of pumps. If on/off signals are not directly 
measured, this is inferred from reservoir level measurements. 
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2. If two or more pumps are used alternately, identification of when each pump is used. If 
on/off signals are not directly measured, this is inferred from pump motor current 
measurements. 

3. Identification of maximum and minimum reservoir levels during each pump cycle (i.e. the 
levels at which the pump is started and stopped). 

4. Determination of average reservoir filling rate and emptying rate during each pump cycle. If 
pump on/off signals are measured, filling/emptying rate may be calculated from these. If not, 
filling/emptying rates are calculated from linear regression of reservoir level measurements 
(assuming that the filling/emptying rates are constant during each cycle). 

5. Determination of the experienced pump capacity per cycle, given as filling rate plus emptying 
rate. 

 
In addition, data cleaning is generally required before utilising the model. The model is physics-
based, and relatively simple, i.e. it does not require specialized competence to utilise. The model 
developed for the Brattset power plant is described in more detail in Chapter 5 in D2.2 [2]. 
 
5. Input data 
Data has been received live from Akkats (Vattenfall) via an OSIsoft PI server from autumn 2017. Data 
from Brattset (TrønderEnergi) has been available via the Voith Bluebox server since end of August 
2017. 
 
The following data has been utilised, if available: 

• Pump operation data: on/off signals (only available for Akkats) 
• Water level in drainage reservoir and other connected reservoirs 
• Reservoir volumes 
• Pump data sheet (rated capacity, efficiency, etc.) 
• Turbine power 
• Pump motor current (only available for Brattset, for indification of pump start and stop 

times) 
 
Note the different data availability for Akkats and Brattset. 
 
6. Other information 
Not relevant. 
 
7. Deliverables 
The following deliverables have been prepared: 
 

No. Deliverable (title) Author Document type Reference 
D2.1 Model for condition 

monitoring of pumps in 
hydropower plants 

F. Kvinen 
(NTNU) 

Specialization project, autumn 2016.  Docs – 
D2.1 [1] 

D2.2 Condition monitoring of 
pump in hydropower plants 

K. Prajapati 
(NTNU) 

Specialization project, spring 2018. Docs – 
D2.2 [2] 
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8. Summary of results 
The drainage system at Akkats was described in a specialization project at NTNU in the fall of 2016, 
and a first attempt of a pump condition monitoring model was made; D2.1 [1]. After a data 
connection to Akkats was set up via a PI server in the fall of 2017, and data could be received live, 
analysis of the drainage pumps was continued1. There are two pumps that are run alternately, and 
the pump that is in operation is switched on and off according to reservoir level setpoints. 
 
Selected results of the analysis are shown in Figure 1. Here the pump run time per cycle (i.e. the time 
used to empty the reservoir down to the lower setpoint) is shown together with the reservoir inflow 
rate2, which was approximated by the average inflow rate during the last 15 minutes before each 
pump start3. The results show that the pump run time is increased at certain times, and that this 
cannot be explained by the estimated inflow rate. It seems likely that this is due to some extra inflow 
to the reservoir occurring only at certain times, that is not captured by the calculation. After 
discussing with Vattenfall, it was concluded that there is indeed some extra inflow that is not 
measured today, and that is pumped into the reservoir in intervals. This issue makes it difficult to 
make a condition monitoring model in terms of pump run time or pump capacity (calculated by 
inflow rate plus emptying rate). A possible simple solution to circumvent the problem is to monitor 
the running median pump time, which effectively will remove the instances of increased run time. 
 

 
Figure 1: Run time for one of the drainage pumps (blue line) and estimated reservoir filling rate (red line) at Akkats. In the 
periods without any data, the other drainage pump was run. The calculation has been done in PI and the plot has been 
taken directly from PI, without any filtering of the data. 

A similar analysis was carried out for the Brattset plant, from which data could be received through 
the preliminary called "Voith Bluebox system", which is a system developed by Voith for extraction 
and transfer of data from the power plants control system. As for Akkats, there are two pumps that 
are run alternately, i.e. one pump is in operating mode, whereas the other pump is in standby mode. 
Switching between the pumps (operating/standby) is performed manually, but the pump that is in 
operating mode is switched on and off according to reservoir level setpoints. Selected results of the 
analysis are shown in Figure 2 for both pumps. Here, the calculated pump capacity per cycle (inflow 
rate plus emptying rate) is shown as a function of time. It is also illustrated how these results may be 
utilised for continuous condition monitoring by comparing the results with a reference level (green 
lines), thereby identifying deviations. For both pumps, the results reveal points in time during which 

 
1 The analysis was performed for the pumps in the leakage pit at Akkats 
2 Measured in m/s, i.e. change of reservoir level per time 
3 This approximation was necessary since the inflow is not measured, and since it is not possible to estimate it 
during which the pump is running 
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the pump capacity was significantly reduced. The cause of this has not been identified, and was for 
the Battset case probably caused by maintenance, but in general it may be a sign of deteriorating 
condition or some alteration made to the drainage system/pumps. 
 

 
Figure 2: Calculated capacity for drainage pumps at Brattset as a function of time; D2.2 [2]. The green lines illustrate 
reference capacity levels to which the capacity may be compared. An alarm level could be defined as pump capacity 
deviation larger than an accepted percentage or amount of the reference capacity level. 

In conclusion, the above results illustrate the potential use of pump condition models, but also some 
limitations. To build such models it is necessary to understand which parameters that govern the 
parameter that is modelled, and that all such explanatory variables are available. If the monitored 
parameter (e.g. the pump capacity) is expected to be constant, constant alarm limits for what is 
considered normal may be applied. When deviations from normal behaviour are identified, it is 
necessary to investigate the cause of this. The cause may be deteriorating pump condition, but could 
also be related to e.g. changes in how the pump is operated or maintenance activities. This illustrates 
that there should be additional information available for improving the models and explain observed 
changes, such as operational data and maintenance data. 
 
9. Plans for further work 
There is one master thesis project related to case C2 still ongoing at NTNU (June 2019); student: 
Kishan Prajapati. When the master thesis is finished, one can usually found it later in the academic 
libraries' data base "Oria" [6] or in the open access data base NTNU Open [7]. 
 
The models should be combined with reasonable limits for normal pump condition, such that 
anomalies can be identified, and alarms can be activated upon a detected anomaly. In this way, the 
operators will have control over the pump condition and can plan for the next inspection or 
overhaul. A possible extension of the models is to identify causes for identified anomalies, estimate 
the criticality of anomalies, and propose suitable actions. 
 
10. References 
[1] F. Kvinen, "Model for condition monitoring of pumps in hydropower plants", specialization 

project, December 2016. 
[2] K. Prajapati, "Condition monitoring of pump in hydropower plants", specialization project, May 

2018. 
[3] “Oria - Norwegian academic libraries’ data base.” [Online]. Available: www.oria.no. 
[4] “NTNU Open.” [Online]. Available: https://ntnuopen.ntnu.no. 
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1. Short description (abstract) 
The aim of this case was to develop algorithms and models for fault detection and prediction of 
remaining useful life (RUL) of rotating equipment based on high frequency sensor data (kHz 
resolution and larger) from vibration sensors (accelerometers), acoustic emission sensors and 
microphones. Such high frequency data is normally not available in power plants. However, 
initiatives exist to collect such type of data and make it available for analysis purposes. Due to the 
absent of data from hydropower plans, the model development was carried out with publicly 
available test data from roller bearings used in laboratory tests, see section 4 for further details.  

The case resulted in a set of models for analysis of the vibration data for the purpose of RUL 
estimation and anomaly detection and classification. The hydropower components of main interest 
for application of such models are the generator-turbine set including the bearings. The methods and 
algorithms developed may also be used for other rotating equipment in the power plants. 
 
2. Benefit, motivation and potential users 
The motivation of the case is to gain insights in potential use of bearing vibration data to classify 
normal behaviour of rotating equipment in hydropower plants and detect when it is likely that there 
is an anomaly in the hydropower plant. The bearing vibration data may also be used to predict the 
remaining useful life (RUL). If anomalous operating states in hydropower plants can be detected and 
classified, the plant operators may receive early alerts that the plant is not operating normally. It may 
then be possible to utilize available resources such as technical expertise or human personnel to 
initiate maintenance or to investigate what might cause the anomaly prior to contingencies resulting 
in costly hydropower plant disconnections. Similarly, if accurate remaining useful life predictions are 
achieved then the power plant operators may initiate maintenance procedures prior to equipment 
failure, while at the same time not replacing costly components long before failure would occur.  
 
3. Methods and models 
The different models (modules) used in this case, and dataflow and connection between the 
models/modules, is illustrated in the figure below. 
 

 
CWT: Continuous wavelet transform (time and frequency domain). RUL: Remaining useful life. 
Figure 1: Overview of datasets, methods applied and code in case 4. 

The vibration data sets (PHM dataset and IMS dataset, see section 4 on "Input data") are passed to 
the feature extraction module. The RUL prediction in MATLAB utilizes both the PHM and the IMS 
dataset. The Python code uses only the PHM dataset.  

Feature extraction and RUL prediction 
Raw vibration data is used for feature extraction. For each dataset, the raw data is transformed into 
wavelets using the continuous wavelet transform (CWT). Wavelets are useful as they combine 
comprehensive details from both the time-domain and the frequency-domain. Statistical features 
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based on wavelets (such as crest factor, waveform factor, skewness, kurtosis, etc.) depict the 
condition of the system. These features are then used in RUL prediction, modelled by a novel Twin 
Exponential Degradation (TED)-model for online prediction. The TED model aims to unify modelling 
of the whole evolving process from steady stage to incipient fault stage and even to rapid 
degradation stage (D4.1, [1]). 

Dimensionality reduction and anomaly detection 
The data is passed to an autoencoder [2] to reduce dimensionality of the features. The autoencoder 
attempts to reduce dimensionality by extracting the dataset's representative features (D4.2, [3]) and 
is shown in Figure 2. 

 

Figure 2: The structure of Convolutional Autoencoder with encoder subnetwork and decoder [3]. 

The data with reduced dimensionality is then passed to the normal behaviour and anomaly detection 
module. A deep learning model is implemented in Python using the neural network library "Keras" to 
classify normal behaviour and anomalies. For further details, see section 7 Summary of results.  

4. Input data 
The input data consists of two datasets, the Prognostics and Health Management (PHM) dataset [4] 
and the Intelligent Maintenance Systems (IMS) dataset [5]. The PHM dataset consists of bearing 
health monitoring data such as rotation speed, temperature, vibration and load force. The data is 
captured under a setup for accelerated degradation of bearings. The IMS dataset consists of vibration 
signal snapshots with sampling at 20 kHz occurring at frequent intervals. Please, see the given 
references for more details. 
 
5. Other information 
The original intention for this case was to use data acquired by ultrasonic (US) microphones at Svorka 
hydropower plant. The original case title was "audio surveillance". The original plan was to cooperate 
with an audio monitoring system supplier, and to install and use the system in cooperation with 
Andritz in a Statkraft power plan. However, the plan could not be finalized. Therefore, the dialogue 
with Statkraft led to an agreement that high frequency vibration and audio surveillance data was to 
be collected at the Svorka hydropower plant. After a format for the measurement data was specified 
(which was similar to the format for the IMS dataset, i.e. vibration snapshots) and a trial run to 
collect test data had been successfully completed, data collection for a longer time period was 
initiated. After the system had been collecting data for approximately half a year, the storage unit 
containing measurement data was retrieved, but the data was not present in the disk, either due to 
HDD failure or some other issue. An alternative data set for bearing vibrations was thus necessary. 

https://github.com/wkzs111/phm-ieee-2012-data-challenge-dataset
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#bearing
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The IMS and PHM datasets were selected for this purpose. In the meanwhile, the initial idea of audio 
surveillance was further developed as a concept and product by the MonitorX industry partners 
Voith (OnCare.Acoustic) and Andritz (see MonitorX case C3), and commercial solutions are or will 
soon come on the market. 
 
6. Deliverables 
The following deliverables have been prepared: 
 

No. Deliverable (description) Author (person) Type of 
deliverable 

Reference 

D4.1 Paper draft for Remaining Useful 
Life-prediction [1] 

Jin Yuan, Kesheng 
Wang, Thomas Welte 

Paper draft  Docs – D4.1 

K4.1 Code for Remaining Useful Life-
prediction 

Jin Yuan MATLAB 
Code  

Code – K4.1  

D4.2 Paper on deep learning approach 
to multiple features sequence 
analysis [3] 

Jin Yuan, Kesheng 
Wang, Yi Wang 

Paper Docs – D4.2 

K4.2 Code for AutoEncoder, 
classification of normal behaviour 
and anomalies 

Jin Yuan Python code Code – K4.2 

 
7. Summary of results 

D4.1 - Remaining Useful Life Prediction 
The TED model can reasonably accurately estimate the remaining useful life (RUL). To do so, it 
requires suitable prior knowledge in the form of a failure threshold. The failure threshold must be 
selected based on previous experience or must be judged by experts. Two run-to-failure benchmark 
datasets of bearings are used to validate the effectiveness of the TED model online RUL prediction. 
The results indicate that the TED model approach performs well at predicting RUL in the steady stage 
of the degradation process. In most cases, the estimated RULs fall into or close to the confidence 
bounds. 

Example results are given in Figure 3. RUL estimation is based on trending the health indicator. In the 
beginning, illustrated in the left diagram for the (current) time 4261, the uncertainty regarding 
further development of the indicator is quite large. This is indicated with the blue lines representing 
different possible trajectories for the further health indicator development. The red line is the mean 
(expected) development, representing the mean lifetime of the bearing, given the observations until 
current time. As more data become available, the uncertainty decreases and the prediction for 
lifetime is updated. The middle and right diagram illustrate how the uncertainty decreases as more 
data becomes available. The RUL estimate, which is the difference between current time and 
predicted lifetime, is also updated as more data becomes available. 

 
1 The time may be measured e.g. in hours, or operational hours, or as data/indicator count, meaning that 426 
represents the 426th time that the health indicator that is calculated. If, e.g. the health indicator is calculated every 
6th hours of operation, 426 corresponds to 2556 hours of operation time. 
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Figure 3: Lifetime prediction and RUL estimation, and updating step by step over time, illustrated for three examples 
representing different times in early life (left, current time = 426), middle of the life (middle, current time = 1126) and close 
to end of life (right, current time = 1226); D4.1 [1].  

 

D4.2 - Deep learning approach to multiple features sequence analysis  
The features calculated based on the vibration raw data were in the Python module for anomaly 
detection and condition (health state) classification analyses by means of the autoencoder approach. 
Different types of autoencoder have been tested, and some of the results are shown in Figure 4 for a 
fully connected and a convolutional autoencoder. The convolutional AutoEncoder (b) is, in contrast 
to the fully connected AutoEncoder (a), able to reduce the high-dimensional data to a lower 
dimensional feature space that shows clear clusters developing over time (the colours in the figure 
represent the time), representing the development of the condition of the bearings over time.  

 

Figure 4: Visualization of deterioration process of bearing life cycle dataset in 2-dimensional space and using (a) a fully 
connected AutoEncoder, and (b) a convolutional AutoEncoder; D4.2 [3]. 

Using the results from the convolutional autoencoder, a clustering scheme with 7 clusters has been 
used, and the changes of the condition of a bearing over its lifetime can be plotted, as illustrated in 
Figure 5. Figure 5 shows that the condition of the bearing gradually moves from cluster 1 (where the 
condition may be as good as new) to cluster 7 (where the condition may be considered as major 
degradation/large anomalies). Albeit the signal is noisy or jittery, we see that there is some change 
occurring over time. 

Such a clustering technique and evolution of condition over bearing life may help decision making in 
predictive maintenance as multiple features sequences may be classified into clusters representing 
the condition of the bearing. The clustering approach is an example of an anomaly classification (i.e. 
the classification of anomalies in different states from slight to large/significant) and allows for 
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monitoring the development of degradation from a condition as good as new (no degradation, no 
anomalies, normal behaviour) to a condition with major degradation (large anomalies).  

  

 

Figure 5: Anomaly classification (classification in condition states 1 to 7) and evolution of condition over bearing life; D4.2  
[3]. 

 
8. Implementation of results 
The code has not been implemented at any industry partners' locations, since the models were 
developed with data from bearing lifetime test set-ups. Test set-ups were used due to lack of data 
from industry partners' hydropower plants. See section 5 for details.  
 
9. References 
[1] J. Yuan, K. Wang, and T. M. Welte, “Twin Exponential Degradation Model for Online Remaining 

Useful Life Prediction,” Paper draft, May-2019. 
[2] Wikipedia, “Autoencoder.” [Online]. Available: https://en.wikipedia.org/wiki/Autoencoder. 
[3] J. Yuan, K. Wang, and T. M. Welte, “Deep Learning Approach to Multiple Features Sequence 

Analysis in Predictive Maintenance,” in Advanced Manufacturing and Automation VII, Changshu, 
China, 2017. 

[4] P. Nectoux et al., “PRONOSTIA: An Experimental Platform for Bearings Accelerated Life Test,” 
presented at the IEEE International Conference on Prognostics and Health Management, Denver, 
CO, USA, 2012. 

[5] J. Lee, H. Qiu, G. Yu, J. Lin, and and Rexnord Technical Services (2007). IMS, University of 
Cincinnati, “Bearing Data Set,” NASA Ames Research Center, Moffett Field, CA. 
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1. Short description (abstract) 
In this case, the condition of generator bearings is studied using SCADA data. Bearing data from BKKs 
Dale and Nygard hydropower plants have been received and analysed. Both Dale and Nygard are 
reservoir power plants with Francis turbines. 
 
To enable dynamical condition monitoring, models for the normal behaviour of bearing temperature 
have been built and trained using artificial neural networks (ANNs). Applying the resulting model to 
other data than the training data set, the model can be used to identify deviations from expected 
behaviour. The viability of the approaches is demonstrated, and promising results have been 
achieved. 
 

 
Figure 1: Overview of MonitorX case C5. 

 
2. Benefit, motivation and potential users 
Bearings are important components that have been known to cause problems when aging, such as 
vibrations, bearing damages, lubrication problems or misalignment problems. Thus, monitoring 
bearings is useful for detecting problems at an early stage. The aim of this case is to develop 
algorithms for early detection of bearing degradation or faults using available SCADA data. 
 
The potential users are hydropower companies that have a system with automatic measurements of 
required parameters available for remote monitoring and analysis, or will acquire such a system, and 
thus can implement the models in their systems. Other potential users are maintenance system 
vendors that deliver condition monitoring solutions and predictive maintenance services.  
 
3. Selected power plants for testing 
BKKs Dale and Nygard are both reservoir power plants with Francis turbines located in Hordaland, 
Norway. Dale [1] is located in the Bergsdalen river system in Vaksdal and has output 146 MW and 
average annual production 677 GWh. Production started in 1927 and the latest reconstruction was in 
2007 with a new generator. Nygard [2] is a pumped storage power plant located in Modalen with 
output 56 MW and average annual production 91 GWh. Production started in 2005. 
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4. Methods and models 
Normal behaviour models have been built using artificial neural networks. Both multilayer 
perceptron [3], recurrent neural networks [4], self-organizing maps [3], [5] and long short-term 
memory (LSTM) neural networks [6] have been used. The models analyse the normal relation 
between multiple parameters, such as power, bearing temperature and bearing vibration. The 
modelling consists of the following general steps: 

1. Data collection. 
2. Data pre-processing. This includes as necessary e.g. filtering, removing of outliers, treatment 

of missing data, and converting to a suitable format. 
3. Data selection. This includes extracting variables for the analysis, i.e. variables that 

characterize or correlate to the quantity of interest, which in this case is the bearing 
temperature. This selection is based on a physical understanding of the system and/or 
statistical analysis. 

4. Building of normal behaviour pattern. This includes building the model artificial neural 
networks (ANN) and training it to know the normal behaviour of selected parameters. It is 
vital that a training data set that covers all typical operating conditions is used. 

5. Anomaly detection. This means to apply the model to a data set differing from the training 
data set to analyse it for deviations from normal behaviour, which may be an indication of 
degradation or a developing fault. 

 
The models are data driven and relatively advanced, i.e. specialized competence is required to utilise 
them. The models depend on the system design and available data. Data selection and building of 
normal behaviour patterns hence differ for the plants. The models developed for the Dale power 
plant are described in more detail in reference [3]. The models developed for the Nygard power plant 
are described in more detail in references [4], [5] and [6]. 
 
5. Input data 
Data from Dale (BKK) from 2008 – 2017 and Nygard (BKK) from 2007 – 2017 was received as Excel 
files. The data are 1-hour average values. This resolution was sufficient to model effects that does 
not vary much and that have long time constants, such as temperature developments in bearings. 
 
The following data has been utilised for the models: 

• Active power (for Nygard) 
• Guide vane opening (for Nygard) 
• Guide bearing temperature (for Dale and Nygard) 
• Thrust bearing temperature (for Nygard) 
• Guide bearing vibration (for Dale and Nygard) 
• Guide bearing oil level (for Dale) 

 
Note that somewhat different data has been utilised to build the models, as commented in 
parentheses. Some other parameters were also received but not used in the models. 
 
6. Other information 
None. 
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7. Deliverables 
The following deliverables have been prepared: 
 

No. Deliverable (description) Author 
(person) 

Description Reference 

D5.1 Anomaly Detection Analysis in Dale 2 
hydropower plant 

M. A. Sanz-
Bobi (Comillas 
University) 

Project memo Docs – 
D5.1 [3] 

D5.2 Analysis of increasing guide bearing 
temperatures at Nygard power plant 

T. Tyvold 
(SINTEF) 

Project memo Docs – 
D5.2 [4] 

D5.3 Intelligent condition monitoring of 
hydroelectric power plants 

T. Tyvold 
(SINTEF) 

Presentation 
poster 

Docs – 
D5.3 [7] 

D5.4 LSTM Based Prediction and Time-
Temperature Varying Rate Fusion for 
Hydropower Plant Anomaly Detection 
 

J. Yuan (NTNU) Scientific paper Docs – 
D5.4 [6] 

D5.5 Anomaly detection method based on 
the evolution of patterns in industrial 
components. Application to a 
hydropower plant 

P.C. Báscones, 
M. A. Sanz 
Bobi (Comillas 
University) 

Paper draft Docs – 
D5.5  
[5] 

K5.1 Normal Behaviour LSTM model J. Yuan (NTNU) Python code Code – 
K5.1 

K5.2 Nygard temperature prediction T. Tyvold 
(SINTEF) 

Python code Code – 
K5.2 

 
8. Summary of results 
For Dale, normal behaviour models were built using both self-organized maps and multilayer 
perceptrons (D5.1, [1]). Self-organized maps were built using data for guide bearing vibration, 
temperature and oil level. It was illustrated how such maps can identify and illustrate patterns of 
normal behaviour for the guide bearing from these parameters, and how this can be used for 
anomaly detection. Similarly, a multilayer perceptron model was built for predicting the normal 
behaviour for the guide bearing vibration in the y-direction from the following parameters: Vibration 
in the x-direction, bearing temperature and oil level. 
 
Selected results for the latter model are shown in Figure 1. The left figure illustrates the training of 
the model, and the right figure the testing of the model for anomaly detection. It is seen that the 
model fits the test set poorly. This is because it was difficult to define a suitable period of normal 
behaviour based on the available data (from year 2011 – 2012), since the data changed significantly 
from 2011 to 2012. 
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Figure 2: Estimated value from the multilayer perceptron model and real measured value for the guide 
bearing vibration for the training data set (left) and the test data set (right) for Dale; D5.1 [1]. 
 
For Nygard, a normal behaviour model was built using a recurrent neural network, see D5.2 [4]. The 
model predicts the guide bearing temperature from the current power, as well as from previous 
measurements of power and temperature (i.e. from one and two hours earlier). This is hence a 
model that possess memory. Selected results for the model are shown in Figure 2. The upper figure 
illustrates the training of the model, and the lower figure the testing of the model for anomaly 
detection. It is seen that the model fits the test set poorly. This is because the training data set was 
not from a period of normal behaviour, but rather from a period showing continuously increasing 
guide bearing temperatures. This is confirmed by BKK who discovered the increasing guide bearing 
temperature in 2017. An inspection done by GE Renewable Norway AS indicated that the cause of 
the steady temperature increase was most likely wear and tear or guide bearing skewness. 
 

 

 
Figure 3: Estimated value from the neural network model and real measured value for the guide bearing 
temperature for the training data set (upper) and the test data set (lower) for Nygard, D5.2 [4]. 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Case

-50

0

50

100

150

200

Y

 Neural network test in the training set

Real Value

Estimated Value



MonitorX Case C5 – Condition monitoring of generator bearings 

Appendix E MonitorX case C5 – page 6 
 

 
The challenge for the above analyses is that the data sets for which the models have been trained do 
not represent a period of stable normal behaviour, because a degradation process (bearing wear) is 
ongoing, resulting in a continuously changing situation with increasing damage and bearing 
temperature. To overcome this problem, a long short term memory (LSTM) neural network model 
was tried instead [6]. LSTM is one of the most successful modern recurrent neural networks 
architectures for sequence learning tasks. An LSTM model was built for the Nygard power plant to 
predict the current bearing temperature from a sequence of foregoing measurements of the 
temperature. Selected results for the LSTM model are shown in Figure 3. The upper left diagram 
illustrates the training of the model, the lower left diagram the testing of the model, the upper right 
diagram the testing of the model compared with actual measurements, and the lower right diagram 
the model error (the difference between the predicted and measured values). It is in the two right 
diagrams seen that the model at first predicts the increasing bearing temperature well, but that the 
prediction gradually deviates from the actual measured values. This is seen as a sign of anomalies, i.e. 
that the way in which the bearing temperature is increasing is changing. 

 

 
Figure 4: LSTM based prediction of upper guide bearing temperature; D5.4 [6]. 
 
 
Finally, a clustering technique was tried for the Nygard power plant (D5.5, [5]) using data for active 
power, guide vane opening and bearing temperature. It was illustrated how such a technique can 
identify and illustrate patterns of normal behaviour for the bearing in terms of these parameters. The 
year 2011 was used as the reference year with which patterns of subsequent years were compared. 
Pattern comparison is done in terms of the pattern's similarity value and the difference in the value 
of the underlying observations. Through this comparison deviations from the reference behaviour 
can be identified. Selected results are shown in Figure 5. The pattern comparison confirmed again 
that an abnormal bearing temperature is developing at Nygard. This is evident from the similarity 
value in Figure 5, which quickly becomes small after the reference year 2011. 
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Figure 5: Results from pattern comparison of clusters built with the parameters active power, guide vane 
opening and bearing temperature. The three top figures apply when the power plant is pumping (S1), while the 
three bottom ones apply when it is producing power (S2). The results show the similarity value and the deviation 
of the patterns per year as compared to the pattern of the reference year 2011. Deviation are based on 
comparing new observations in the years 2012-2016 with a reference pattern from year 2011 (centroid of 2011 
observations). Deviations can be positive (+) and negative (-), with zero deviation in year 2011, and increasing 
deviation over the years, indicating increasing deviations. See D5.5 [5] for further details. 
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1. Short description (abstract) 
In this case the condition of the hydraulic regulating system of Kaplan turbines is studied. A Kaplan 
turbine is regulated by adjusting the position of the wicket gates and the turbine runner blades. This 
is done by a high-pressure hydraulic system, typically consisting of an oil tank, oil pumps, valves, 
filters, coolers, and accumulator banks for the wicket gates and runner blades. To enable dynamical 
condition monitoring of this system, models that predict the turbine normal behaviour have been 
built. 
 
Turbine data from Glitres Embretsfoss IV and Vattenfalls Laxede hydropower plants have been 
analysed. Using machine learning algorithms, normal behaviour models were developed for e.g. the 
level in the oil tank. Comparing the model predictions with actual measurements, deviations from 
normal behaviour can be identified. For both Embretsfoss and Laxede, good results were achieved. 
An overview of codes, documents and data used for case C6 is given in Figure 1. 
 

 
Figure 1: Overview of MonitorX case C6. 
 
2. Benefit, motivation and potential users 
The motivation for this work is that the Kaplan propeller and hub is not accessible for inspection 
during production. A method for online condition monitoring without the need for unwanted 
production stops is therefore desirable. The hydraulic system is of special interest as it is vital for the 
control of the turbine, and because oil leakages is a known issue. 
 
The potential users are hydropower companies that have a system with automatic measurements of 
required parameters available for remote monitoring and analysis, or will acquire such a system, and 
thus can implement the model in their systems. Other potential users are maintenance system 
vendors that deliver condition monitoring approaches for predictive maintenance.  
 
3. Selected power plants for testing 
Embretsfoss 
Embretsfoss IV is a run-of-river hydropower plant in the river Drammenselva in the Buskerud county, 
Norway. The power plant has a single 7m in diameter Kaplan turbine, making it one of Norway's 
largest Kaplan turbines. It has a head of 16.3m and a water discharge of 340 m3/s. It has a capacity of 
52.5 MW and a yearly production of 270 GWh/year. The power plant was commissioned in 2013 and 
is operated by Glitre Energi Produksjon.  

Laxede 
Laxede is a hydro power plant in the river Luleälven in the Norrbottens county in the north of 
Sweden. The power plant is equipped with Kaplan turbines, and it has a head of 25m and a water 
discharge of 570m3/s. It is owned and operated by Vattenfall.  
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4. Methods and models 
The models are built with artificial neural networks (ANNs) or support vector machines. The models 
predict the normal state of a variable, e.g. the oil level, from other explanatory variables. The 
modelling consists of the following general steps:  

1. Data collection. 
2. Data pre-processing. This includes filtering, removing of outliers, treatment of missing data, 

and converting to a suitable format if necessary. 
3. Data selection. This includes extracting relevant variables, i.e. the explanatory variables for 

the variable to be predicted. This selection is based on a physical understanding of the 
system and/or statistical analysis. 

4. Building of normal behaviour model. This includes building e.g. an ANN model and training it 
to represent the normal behaviour for a signal (measured quantity) of interest as a function 
of several other signals. It is vital that a training data set covers all typical operating 
conditions. 

5. Anomaly detection. This means to apply the model to detect when the predicted variable 
deviates from the expected value (i.e. the measured value), which may be an indication of 
degradation or a developing fault. 

 
The models are data driven, i.e. the physical relationship between variables is not investigated or 
utilised. This is an advantage in cases where this relationship is not known, or where no other good 
models are available to explain and predict the operational behaviour of the plant/components. The 
models are relatively advanced, i.e. specialized competence about machine learning models in 
general, and ANNs in particular, is required to utilise them. 
 
The models depend on the system design and available data, which differs for the Embretsfoss and 
Laxede plants. Data selection and building of normal behaviour patterns hence differ somewhat for 
the Embretsfoss and Laxede models. The models developed for the Embretsfoss power plant are 
described in more detail in deliverable D6.1 [1]. The models developed for the Laxede power plant 
are described in more detail in deliverables D6.3 [2] and D6.4 [3]. 
 
5. Input data 
Data from Embretsfoss (Glitre) from 2015 – 2017 was received as Excel files. Data from Laxede 
(Vattenfall) has been received live via an OSIsoft PI server that was in operation and connected to 
Vattenfall's OSIsoft PI server from autumn 2017. In addition, earlier data starting from May 2016 was 
received from Laxede in Excel files. 
 
The following data has been utilised for the models: 

• Generated power 
• Wicket gate position 
• Runner blade position (only for Laxede) 
• Head water level 
• Tail water level (only for Embretsfoss) 
• Turbine water flow (only for Embretsfoss) 
• Turbine spiral pressure (only for Laxede) 
• Hydraulic oil tank level 
• Hydraulic oil tank temperature 
• Hydraulic oil pressure (only for Laxede) 
• Wicket gate accumulator bank level, all accumulators 
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• Runner blade accumulator bank level, all accumulators 
• Oil cooler temperature, oil in, all coolers (only for Laxede) 
• Oil cooler temperature, oil out, all coolers (only for Laxede) 
• Oil cooler temperature, water in, all coolers (only for Laxede) 
• Oil cooler temperature, water out, all coolers (only for Laxede) 

 
Note that somewhat different data has been utilised to build the models for Embretsfoss and Laxede, 
as commented in parentheses. Some other parameters were also received but not used in the 
models. 
 
Data pre-processing 
Data pre-processing is concerned with preparing the raw data for input to the methods and models. 
Several methods may be applied to pre-process the data. The following describes some methods that 
have been attempted in some cases. Failure messages such as "Comm Fail" or "Bad" may be mapped 
to NaN (Not a number) values. Boolean fields with values such as "on" or "off" may be mapped to 
programming standard values "True" or "False" respectively. Further, columns that lack many data 
points may be dropped, as was done in D6.3 [2] where columns that were less than 75% full were 
dropped. Further, the data may be noisy and contain erroneous measurements that are outliers 
among correct measurement readings. Extreme outliers may be removed by e.g. dropping data that 
is more than 5 standard deviations away from the mean of their respective columns.  
 
6. Other information 
None. 
 
7. Deliverables 
The following deliverables have been prepared: 
 

No. Deliverable (title) Author 
(person) 

Description Reference 

D6.1 Anomaly indicators for 
Kaplan turbine components 
based on patterns of 
normal behavior 

M. A. Sanz-
Bobi 
(Comillas) et 
al. 

Conference proceeding 
(ESREL) 

Docs – D6.1 
[1] 

D6.2 Definition of anomaly 
indicators and condition 
prognosis in components of 
a hydropower plant 

B. Garcia 
Alejo 
(Comillas) 

Master thesis, spring 2018 Docs – D6.2 
[4] 

D6.3 Condition monitoring of 
hydropower components 
using machine learning 

E. L. 
Andreassen 
(SINTEF) 

Memo, summer internship 
2018 

Docs -D6.3 
[2] 

K6.1 Matlab ANN models M. A. Sanz-
Bobi 
(Comillas) 

Matlab code for training of 
ANN and fault detection 
(prediction) 

Code – K6.1 

K6.2 Python ANN models E. L. 
Andreassen 
(SINTEF) 

Python code (tensor flow) for 
training of ANN and fault 
detection (prediction) 

Code – K6.2 

D6.4 Normal behaviour 
modelling oriented to 
diagnosis and prognosis 

M.A. Sanz- 
Bobi 
(Comillas) 

Technical report  Docs – D6.4 
[3] 
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8. Summary of results 
Embretsfoss 
For Embretsfoss, two multilayer perceptron neural networks were built to model the normal 
behaviour of the generated power and the hydraulic oil tank level; see D6.1 [1]. The first model 
predicts the generated power from the wicket gate position, water flow, and the difference between 
headwater and tailwater levels. The second model predicts the oil tank level from the generated 
power, oil tank temperature, and the oil level in one of the accumulators. 
 
The results obtained from the models were very good. Selected results for the model for oil tank 
level are shown in Figure 2. The left figure illustrates the training of the model, and the right figure 
testing of the model for anomaly detection. It is seen that the model accurately predicts the systems 
normal behaviour for the training set (left), and that an apparent anomaly is detected in the test set 
(right). The increasing deviation between the model and real data in the test set indicates a possible 
fault or an oil leakage. The leakage in an accumulator (from oil to gas side) was confirmed by Glitre. 
 
To verify the robustness of this modelling approach, the Embretsfoss turbine was also analysed in a 
master thesis; see D6.2 [4]. It was confirmed that multilayer perceptron neural networks can predict 
normal behaviour of the hydraulic oil system very well. Models were also built using support vector 
machines and radial basis functions, showing results that were somewhat less good. 
 

 

Figure 2: Estimated value from the ANN model and real measured value for the oil tank level for the 
training data set (left) and the test data set (right) for Embretsfoss; D6.1 [1]. 
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Laxede 
Similar models were also tested by SINTEF and Comillas on data from Vattenfalls hydropower plant 
Laxede (D6.3 [2] and D6.4 [3]). The test confirmed the ability of ANNs to predict the behaviour of 
Kaplan turbines. An example of prediction of oil cooler exit temperature is shown in Figure 3. A 
simpler linear regression model was also tested for modelling the power for the Laxede turbine, 
giving results with accuracy similar to an ANN model.  
 
The Laxede Kaplan hydraulic system has two sensors for oil level in the oil tank. Thus, two ANN 
models were built, one for the oil level measured by sensor no. 1 and one for the oil level measured 
by sensor no. 2. In Figure 3, left part, the predicted oil tank level for Laxede is shown versus the real1 
(measured) oil tank level for an ANN model for sensor 2. Only the test data set is shown. 
Discrepancies can indicate a problem in the hydraulic system but does not reveal the cause of the 
problem. Figure 4, right part, then presents the time instants in which the model error (difference 
between the measured and the predicted oil tank level) in the testing period is greater than what 
was observed during the training of the ANN model. These anomalies are intermittent and therefore 
do not indicate a serious oil leakage problem. Investigations indicate that some of the anomalies may 
instead be due to maintenance work. 
 

 
Figure 3: Sensor 2: Real oil tank level and predicted oil tank level for the testing period (left), and 
anomaly detection (right); D6.4 [3]. 
 

Similar to sensor 2 and Figure 3, the results for an ANN model for sensor 1 are shown in Figure 4. The 
anomalies for sensor 1 are large and the error is increasing over a longer period until the anomalies 
disappear. The cause for these anomalies is a sensor error. The measurements from sensor 1 are 
drifting, and the sensor measured increasingly too low oil levels, until it has been calibrated end of 
November 2017. When two or more sensors are installed, such sensor errors can easily be detected 
by comparing the measurements from the sensors. However, when only one sensor is installed, the 
ANN model provides a method of detecting sensor errors in an early stage. However, the model will 
not help to detect the cause of anomalies. Thus, when anomalies are detected, one should first check 
if the sensor is miscalibrated or there are other errors with the oil level measurements. Note that the 
erroneous oil level measurements may also be caused due to problems and errors of the system for 
data transfer and collection. When the oil level measurements are correct, the cause for the 
anomalies may be oil leakages and other faults in the power plant. 

 
1 Note that the term "real value" may be confusing, since the real value in this case represents the measured 
value (i.e. the value received from the sensor and stored in the data base). However, if there is a sensor or 
other measurement and data collection errors, the measured value does not correspond to the real oil level in 
the tank. 
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Figure 4: Sensor 1: Real oil tank level and predicted oil tank level for the testing period (left), and 
anomaly detection (right); D6.4 [3]. 
 

9. Plans for further work 
Skellefteå Kraft has started a cooperation with a master student (Tina Stark) where the ANN models 
described above are tested with data from their power plants. The work is still ongoing, and results 
are therefore not described here. 
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1. Short description (abstract) 
The aim of this case was to develop a model to describe the temperature behaviour of power 
transformers based on operational data. The normal operational behaviour of the transformer is 
modelled for an initial reference period, so that the model can be used to identify deviations from 
the normal behaviour for later periods. This can e.g. identify a cooling system fault. 
 
An artificial neural network (ANN), similar to the one used in MonitorX case C6 (Kaplan turbine), have 
been applied in this case. The top oil temperature is modelled with the ANN, and deviations of the 
observed temperature from the modelled temperature is an indicator of fault. 
 
2. Benefit, motivation and potential users 
The condition of the winding insulation paper is regarded as one the main life-limiting factors for 
power transformers. The condition of the paper is determined by the temperature it is exposed to. 
To avoid high temperatures, an efficient and working cooling system is therefore important. 
Monitoring the cooling system can identify if the system is performing poorly, giving the transformer 
owner a chance to fix the system and thereby prolong the transformer life. The potential users are 
hydropower companies as well as grid operators. Other potential users are maintenance system 
vendors that deliver condition monitoring approaches for predictive maintenance. 
 
3. Selected power plants for testing 
Uvdal 1 (Skagerak Energi Kraft) is a reservoir power plant located in Uvdal in Buskerud. It has output 
92 MW and average annual production 320 GWh. Production started in 1966. 
 
4. Methods and models 
A feed forward neural network with a single hidden layer consisting of 10 nodes was used to model 
the top oil temperature. The top oil temperature was modelled as a function of the load on the 
transformer and cooling water temperature. In addition, a recurrent neural network was tried. This 
network had two hidden layers: an LSTM layer with 10 nodes, and a dense layer with 10 nodes. It was 
trained with input sequences of 24 hours, and an output of the top oil temperature at the last hour.  
 
5. Input data 
The data used for modelling was extracted from multiple larger data sets and compiled into a single 
data set containing only relevant features. Data points with missing readings were dropped. The data 
was then resampled at an hourly interval. The input data consists of the following signals: 

• Transformer top oil temperature 
• The production of the corresponding generator (which is the same as the load on the 

transformer) 
• Transformer cooling water temperature 

 
In addition, the setpoint for when the cooling system is turned on was estimated based on the 
available data using the top oil temperature crossing a given threshold as an indicator for the status 
change (on/off) of the cooling system. 
 
6. Other information 
None. 
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7. Deliverables 
The same type of model as for case C6 has been used in this case. Thus, for code and documentation, 
it is referred to document D6.3 and code K6.2. 
 

No. Deliverable (description) Author 
(person) 

Type of deliverable Reference 

D6.3 Condition monitoring of 
hydropower components 
using machine learning 

E. L. 
Andreassen 
(SINTEF) 

Memo, summer 
internship 2018 

Docs -D6.3 [1] 

K6.2 Python ANN models E. L. 
Andreassen 
(SINTEF) 

Python code (tensor 
flow) for training of 
ANN and fault 
detection (prediction) 

Code – K6.2 

 
8. Summary of results 
The main results are shown in Figure 1. As seen, the trained model for the transformer top oil 
temperatures is not that accurate. There are multiple possible causes for the inaccuracy. The top oil 
temperature is only predicted from two parameters, and there may be other factors affecting the 
temperature. The internal design and temperature sensor placements of transformers varies, and 
this affects the extent to which the top oil temperature is governed by the transformer load and 
cooling water temperature. Since the load on the transformer varies a lot, the transformer is in 
general not in steady state. Hence, a time-dependent model may be more suitable. To this aid, a 
model was also developed using a recurrent network. This model performed only slightly better than 
the simple feed forward network. The improvement may have been limited by a time resolution of 
only one hour that not necessarily captures all important dynamics. 

 

Figure 1: Prediction of the top oil temperature of the transformer in Uvdal 1 power plant using a feed forward network 
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Extraction of data from Brattset Power plant – 
Experiences  

Background 
At the start of the Monitor X project in 2015, it was seen as a particular challenge 
to get access to data from power plants for testing of algorithms and hypothesis 
of different kinds. TrønderEnergi agreed to share their data from Brattset hydro 
power plant with the Monitor X project. However they did not have any way to 
transfer the data from the plant to a location where it could be made available 
to the research teams. For IT security reasons it was not accepted to access the 
SCADA and dispatch center to extract the data. Voith Hydro AS had supplied a 
new control system to Brattset in 2014 and agreed to make the transfer of the 
data to a server in Heidenheim, Germany from where TrønderEnergi, SINTEF and 
other Monitor X partners could download the data.  

Figure 1 shows a sketch the PLC configuration of Brattset. The additional 
hardware that was added to transport the data out of the plant is shown in the 
upper right corner. 

The data that is transferred are all the signals (messages, warnings/alarms and 
measurements, but not commands) from the PLCs connected to the station bus. 
The information in the subsystems lower down in the system architecture is not 
transferred in this project. 

 The chosen configuration has some characteristics and advantages seen from 
different perspectives: IT security requirements towards the control system itself 
are met by realizing a one way data traffic out of the control system combining a 
software and hardware setup to create a “data diode” without any possibility to 
transfer information or data in the other direction. 

As the original use of the data in a control system is intended for smooth 
operation of the plant and avoid alarms due to normal transient events like 
start/stop, all control systems are able to suppress, filter or delay signals to a 
certain extent. The used configuration fetches all data as raw signals without any 
of the above signal distortions.  

Appendix H
MonitorX Case C8 – SCADA data collection system 
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Figure 1. Brattset PLC structure. 

Creating a parallel channel for information transfer out of the power plant also 
creates a lot of flexibility for a stepwise implementation of a wider monitoring 
scheme. The standard industrial computer, here as labeled Bluebox, can easily 
be equipped with a variety of SW and I/O options to allow connection to a 
virtually unlimited selection of additional sensors in parallel to the control 
system.  

The data transfer 
The data is transferred from the power plant to the Firewall of TrønderEnergi on 
an unencrypted protocol to enable the IT security systems of TrønderEnergi to 
monitor the activities. 

From the Firewall towards the Voith Cloud the data is transferred in a VPN 
tunnel on the protocol AMQP. 
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The control system works with spontaneous transfer of changes/events and real-
time processing of data with a cycle time <10 ms. Time stamping of the digital 
signals are with a cycle time 10 or 100 ms, depending on priority. Analogue 
signals are updated with a cycle time close to 1 s limited only by the processing 
time of the A/D converter of the O/I cards. 

The data is transferred to the Voith Cloud cyclically approximately every 1 
second. All signals are time stamped in the “Bluebox” for each transfer of data, 
and it is this timestamp that is transferred with the data to the Voith Cloud. This 
leads to a minor time delay up to 1 second compared to the timestamp given by 
the signal processing in the PLCs. In theory also a loss of digital data can happen 
in case on fast changing of signal status, like circuit breaker close/open 
sequence. The above limitations have not been seen as critical as the use of data 
was intended analyze time series of length very much longer than 1 second. 

Accuracy on analogue values 
The measurement accuracy of the Cloud data is defined by the original control 
system and sensors. The transfer to the Cloud itself do not affect the signal 
accuracy, expect for the above mentioned time delay. 

Typical values of the physical measuring accuracy from the different steps of the 
signal processing: 

Primary sensor accuracy 0,2-10% of full-scale reading 

A/D converters 0,5 % 

Digized values 0,05 % (12 bits) of full scale 

In addition the calibration of the different signals is not known and therefore 
also some additional deviations for sensors that are typically drifting over time 
like flow meters and similar. 

The above tolerances gives limitation in accuracy to any algorithms applied on 
the signals. 

Amount of data 
The amount of raw data collected with this system is 32 GB for two years since 
March 2017. This is much less than expected and is related to the fact that the 
machines run quite stable with less start/stop sequences and shifting load set-
points than was foreseen by Voith. Indirectly it also indicates that there is little 
noise in the analogue signals that in turn indicates a well working plant. 
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Suggestions for further work 
It appears that one of the overall challenges discovered during the Monitor X 
project is to provide sensor data from the plants to a centralized platform in a 
cost-effective way in parallel to the communication to the dispatch center.  

One of the technical features that can support increased cost effectiveness is 
standardized formats and structures for generalized signal transfer based on the 
state of the art IoT-solutions. A long step in this direction will be an industry wide 
common agreement on what standards should form the basis. 

It is recognized that the new ISO/IEC 81346-Part 10 (draft 2019) must be 
implemented over a long time. This means that the physical tagging of an 
existing plant will have to be different from the digital tagging until the control 
system and related primary equipment is renewed. To further support cost 
effectiveness in this topic, a standardized cross referencing systematic will be 
very useful. 
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